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Abstract
Background: Multimorbidity is a public health concern and an essential component of aging and healthspan 
but understudied because investigative tools are lacking that can be translatable to capture similarities and 
differences of the aging process across species and variability between individuals and individual organs. 
Methods: To help address this need, body organ disease number (BODN) borrowed from human studies was 
applied to C57BL/6 (B6) and CB6F1 mouse strains at 8, 16, 24, and 32 months of age, as a measure of systems 
morbidity based on pathology lesions to develop a mouse PathoClock resembling clinically-based Body Clock 
in humans, using Bayesian inference. A mouse PhysioClock was also developed based on measures of physi-
ological domains including cardiovascular, neuromuscular, and cognitive function in the same two mouse 
strains so that alignment with BODN was predictable. 
Results: Between- and within-age variabilities in PathoClock and PhysioClock, as well as between-strain vari-
abilities. Both PathoClock and PhysioClock correlated with chronological age more strongly in CB6F1 than 
C57BL/6. Prediction models were then developed, designated as PathoAge and PhysioAge, using regression 
models of pathology and physiology measures on chronological age. PathoAge better predicted chronological 
age than PhysioAge as the predicted chronological and observed chronological age for PhysioAge were com-
plex rather than linear. 
Conclusion: PathoClock and PhathoAge can be used to capture biological changes that predict BODN, a metric 
developed in humans, and compare multimorbidity across species. These mouse clocks are potential transla-
tional tools that could be used in aging intervention studies.
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Introduction

An increase in the population of older adults comes with a 
rise in age-related health conditions [1]. With the increase 
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in lifespan in the population, healthspan has become a 
focus of research and public health policies [2, 3]. There-
fore, measurements of healthspan require cross-species 
translatable tools for preclinical and clinical studies [4-
6]. For example, with distinct frailty indices in humans, 
mouse models of frailty have been developed [7-9]. Re-
cent studies of age-related pathology using a geropathol-
ogy platform that generates age-related lesion scores [10] 
have suggested a stronger correlation between age-related 
pathologies and chronological age than frailty indices [5, 
10, 11].
A crucial aspect of healthspan is the burden of multimor-
bidity, conventionally described as having two or more 
diseases [2]. While comorbidity is commonly used to 
assess clinical disease burden in people, especially with 
increasing age, it has not been well characterized in ani-
mal models in a manner that has significant translational 
relevance.
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Studies of rodent models have extensively focused on 
lifespan, using either chronological age or time to death as 
outcomes [12-14]. In recent years, healthspan has become 
an increasingly important focus of research with an in-
crease in the older population [11, 15]. Multimorbidity is 
one of the crucial aspects of healthspan [4], but the study 
of multimorbidity in mammalian models has been limited. 
Most studies have used a frailty index (FI) of one kind or 
another as a translatable tool to report health in humans or 
mice. Previously, FIs were adapted to apply to C57BL/6 
mice [8], and a study of C57BL/6 showed that FI scores 
were related to heart hypertrophy [9]. However, the dis-
ease status of organs with morbidity and the histopatho-
logical changes associated with specific organs were not 
studied. In addition, whether the physiological changes 
tracked with end-point pathologies was not reported.
Moreover, human FIs usually incorporate the disability 
state into the score, skewing the measures toward those 
with a disability rather than predicting disability as one 
possible deteriorating outcome prior to mortality [7].
One approach to better define comorbidity in animal mod-
els is to consider the presence of pathology at the organ 
level. While many studies have focused on how aging 
and age-related diseases affect individual organs, each 
organ’s contribution to overall aging has been overlooked. 
A recent study of multimorbidity in the human population 
has suggested body organ disease number (BODN) as an 
index of multimorbidity [16]. The disease levels of each 
organ are heterogeneously incorporated into BODN at the 
individual level. The integrated burden of disease incor-
porated into BODN for an individual has been shown to 
outperform chronological age to predict BODN and has 
been termed Body Clock [16].
Therefore, it is speculated that an organ-based pathol-
ogy system in aging mice, such as the recently developed 
geropathology grading platform [10] could be used to 
define a measurable phenotype designated as PathoClock. 
By applying the Bayesian inference [9], the mouse-
specific PathoClock could be a useful tool to simulate 
the human Body Clock. In addition, physiological and 
functional measurements are routinely determined in ag-
ing mouse studies. Therefore, this type of preclinical data 
could be used to predict heterogeneous BODN resulting in 
a mouse-specific PhysioClock.
Some studies of aging have used biological measures tied
to chronological age as outcome to predict biological age 
[12]. The current manuscript introduces PathoAge and 
PhysioAge using Bayesian inference and regression mod-
els of pathology and physiology measures, respectively, 
to understand how pathology and physiology based on 
chronological age align with biological age.

Methods

Mice and study design

CB6F1 and C57BL/6 male mice were obtained from the 
National Institute on Aging (NIA) aged rodent facility 

(Charles River @ Laboratories) and housed in a specific 
pathogen-free facility at the University of Washington 
(UW) School of Medicine. Standard care procedures were 
followed including rodent chow, reverse osmosis purified 
automatic watering, 12: 12 light cycle, and 72 ± 2 degrees 
F room temperature. All animal protocols were approved 
by the UW Institutional Animal Care and Use Committee. 
Animals were euthanized for pathology studies at ages 8, 
16, 24, and 32 months, three months after the physiologi-
cal domains were measured.

Physiological assessment

(1) Cardiac function. Echocardiography was used to as-
sess systolic and diastolic function in mice. The Siemens 
Acuson CV-70 system using standard imaging planes: M-
mode, conventional, and Tissue Doppler imaging, was 
used to measure cardiac function, including the ratio of 
the aorta and left atrium (AO/LA ratio), ejection time (ET 
msec), isovolumic contractile time (IVCT msec), iso-
volumic relaxation time (IVRT msec). The E/A ratio as a 
marker of the left ventricle function indicates the peak ve-
locity blood flow from left ventricular relaxation in early 
diastole (the E wave) to peak velocity flow in late diastole 
caused by atrial contraction (the A wave). Myocardial 
performance index (MPI) incorporates both systolic and 
diastolic time intervals in expressing a global systolic and 
diastolic ventricular function quantified as MPI = (IVCT + 
IVRT)/ET [17]. The methods are described elsewhere [18].
Neuromuscular Function. Established tests of muscular 
activity were used to assess changes in muscle strength 
and coordination with age. Several assessments including 
coordinated walking ability, grip strength, novel environ-
ment response, and self-motivated running, were used to 
address variability due to motivation, emotionality, or sen-
sory deficits.
(2) Coordinated walking ability. Coordinated walking 
ability was assessed using a rotarod apparatus (Rotamax 
4/8, Columbus Instruments, Inc.) that tested the ability of 
the mouse to maintain walking speeds on a rotating rod. 
Mice were placed in the lanes of the rotarod with the ini-
tial rod speed set at 0 RPM. The speed was progressively 
increased by 0.1 RPM/sec (0 to 40 RPM over 5 minutes) 
until all mice had been dislodged as determined by an 
infrared sensor. The time in seconds was recorded. Three 
successive runs were performed per day for three days. 
Therefore, there is an evaluation of motor function and 
performance learning. The assay was performed by the 
same person, at the same location. Data are reported as the 
median of 3 trials and standardized by body weight.
(3) Grip strength. Forelimb grip strength was analyzed 
using a force tension apparatus (San Diego Instruments 
Columbus Instruments, Inc.). Prior to the test, each mouse 
was weighed to the nearest 0.1 g. Once mice gripped the 
stationary bar with their forepaws, they were stretched 
horizontally while held at the base of their tails. Mice 
were pulled gradually until they let go of the bar. The pro-
cess was repeated 5 times to determine the peak grip force 
value (gram-force) standardized to body weight [19].
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scoring system from 0 (no lesion present) to a range of 1 
to 4 (lesion presence and severity). The absence or pres-
ence and severity of age-related lesions were then used to 
determine organ morbidity defined as the presence of two-
level 1 lesions or one lesion with a score of 2 or greater. 
The body organ disease number (BODN) was then calcu-
lated as the number of organ systems with morbidity as 
a proxy of multimorbidity and a counterpart of clinically 
determined BODN in humans. With the premise that dif-
ferent pathology entity levels incorporate into BODN het-
erogeneously, all organ pathologies in a model were used 
to predict BODN for each mouse to quantify PathoClock 
independent of chronological age.

Statistical analyses

BODN was considered an ordinal outcome as a number of 
organ systems with at least two positive pathology criteria 
at level 1 or at least one pathology at level 2 or more. We 
recorded the levels starting from 1 as an ordinal value. 
Bayesian inference was used for ordinal outcome [26] 
also ordinal [27], binary, or continuous predictors depend-
ing on the type of predictor variables [27-30]. Bayesian 
inference approach was used comprising two components: 
1) Prior knowledge on the estimates (parameters), as the 
information before observing the data P (ϴ) where ϴ indi-
cates the parameters; and 2) the likelihood P (Y|ϴ) of the 
information contained in the data (Y). Using the Bayes 
formula, the posterior distribution of the parameters P 
(ϴ|Y) was obtained, which can be updated when encoun-
tering new data [28].
Applying the conditional probability given the known 
data on BODN, the Bayesian inference framework yields 
the posterior density of beta estimate coefficients and 95% 
credible interval (CI) that each pathology level incorpo-
rates into BODN, or each physiological measure predicts 
BODN. For each coefficient parameter, we determined the 
distributions of their prior parameters using weak priors 
[28]. For the classes of beta coefficients and intercept, the 
prior estimate with a normal distribution (mean: μ = 0, 
variance σ = 10), and for the class standard deviation (sd) 
which indicated the variation of levels related to varying 
age, the half-Cauchy (0,10) was used. The uniform prior 
with a Dirichlet distribution was used for ordinal predic-
tors [i.e., (2, 2) for ζ1 and ζ2 (simplex parameters) for a 
three-level pathology predictor]. We reported the standard 
deviation for the model level in multilevel analyses (sd), 
and sigma which is the variance of a continuous outcome 
in the model with a gaussian family [27, 30]. Posterior 
predict function was then used in the Bayesian frame-
work [28, 30] to predict individual-based BODN for each 
mouse using all organ pathology levels, termed Patho-
Clock. The correlation of PathoClock and chronological 
age was quantified as a rate of pathology-based biological 
age.
The model accuracy was assessed with Leave-One-
Out Cross-Validation (LOO-CV) (k < 0.7) which with a 
Pareto-smoothed importance sampling diagnostic k < 0.7 
indicating the LOO-CV computation is reliable and there 

(4) Novel environment response. Mice were assessed for 
movement levels in a novel cage environment using an 
open field photobeam apparatus (Photo beam Activity 
System, Columbus Instruments, Inc.). Each mouse was 
placed for five minutes in a clear, rectangular, plastic con-
tainer the size of a standard mouse cage, which had a rect-
angular grid of infra-red beams inside, three on the X-axis 
and four on the Y-axis to measure horizontal movement 
(lateral activity). Another grid set of beams were posi-
tioned above the lower set to measure vertical movement 
(rearing). Beam breaks were counted for activity and rear-
ing and further classified for either the central or periph-
eral part of the box as a measure of anxiety. The activity 
was assessed for a five-minute period on three consecutive 
days [20].
(5) Self-motivated running. The self-motivated running 
distance was measured by a voluntary wheel running ap-
paratus over three days as described by Goh and Ladiges 
(2015) [21]. Mice were placed into a standard cage with 
a slanted plastic saucer-shaped wheel (Med Associates, 
Inc.). Mice were acclimated to the cage for 48 hours with 
the wheel locked, after which the wheels were unlocked 
and the distance each mouse ran was tracked by a com-
puter over 72 hours including both light and dark cycles. 
Total distance in kilometers was recorded.
(6) Cognitive Function. Cognition was assessed using 
the radial water tread (RWT) maze, an assay used to as-
sess memory as previously described [22, 23]. The RWT 
detects changes in hippocampal function in mice. Briefly, 
mice are introduced into an approximately 30-inch cir-
cular galvanized enclosure with waste-deep water and 
peripheral escape holes in the sides at regular intervals, all 
closed except one which leads to a dark “safe box” with a 
heating pad. The inside walls contain spatial cues for the 
animal to find the escape route with repeated trials. The 
animals were given three trials per training day, and the 
testing period ran across successive days to test long-term 
memory acquisition. Performance was recorded by direct 
observation [24].
Various physiological domains described above were used 
to predict body organ disease number (BODN) and define 
a mouse-specific PhysioClock independent of chronologi-
cal age.

Pathological assessments

Cataract assessment. The presence and severity of cata-
racts were assessed by slit-lamp ophthalmoscopy on 
unanesthetized mice after dilation with a 3: 1 volume 
mixture, respectively, of tropicamide and phenyl hydro-
chloride to achieve full dilation. The degree of lens opac-
ity was rated by half steps from 0 (completely clear) to 
4 (complete opacity of a mature cataract) as previously 
described [25].
Histopathology assessment. Histopathology assessments 
were performed on Hematoxylin and Eosin-stained 4-mi-
cron tissue sections from heart, kidney, liver, pancreas, 
muscle, lung, and brain as previously described [10]. 
Age-related lesion severity levels were determined by a 
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are no outlier observations. Also, a Bayesian inference 
approach called “stacking” determines model weights for 
each model to predict an outcome [29, 31]. The Leave-
One-Out R squared (LOO_R2) was used to determine the 
R2 of the model to show how a model explains the out-
come [32].
All statistical analyses were performed using the Bayesian 
“brms” software package [30]. A dynamic Hamiltonian 
Markov chain Monte Carlo (MCMC) algorithm [30, 33] 
was used to obtain posterior draws using a minimum of 
six chains and a minimum of 10,000 iterations. Model 
averaging was then used in the Bayesian framework, 
called stacking, which provides weight for the best model 
predicting BODN [34]. For pathologies of more than two 
levels, we used the “monotonic” effect implemented in the 
Bayesian inference framework which defines the prob-
ability of coefficient estimates with Dirichlet distribution 
[27]. The physiological measures like grip strength or 
rotarod, which have an inverse association with BODN, 
were transformed so that were multiplied by -1 to develop 
PhysioClock.
Commonly, studies statistically have regressed biomark-
ers or phenotype measurements on chronological age to 
assess how they predict chronological age [12]. In concert 
with such an approach, we developed PhysioAge and 
PathoAge, regressing the allocated physiological mea-
sures and pathological level measurements, respectively, 
on chronological age using a gamma distribution. In 
CB6F1, to develop PhysioAge, we included normalized 
grip strength, rotarod test at day 3, open field activity at 
day3, open field rearing at day 2, distance, AO/LA ratio, 
ET (ejection time), LVM, MPI, and Maze test at day 5. In 
C57BL/6, for PhysioAge we included nine physiologic 
measures including AO, LA, natural log-transformed E/
A ratio, LVMI and MPI, Maze test at day 5, open field 
activity at day 1, rotarod at day 2, and normalized grip 
strength.

Results

Physiological performance predicts body organ disease 
number

Cardiac function. Echocardiography was used to measure 
cardiac function. For CB6F1, the ratio of aortic valve di-
ameter to left atrium dimension (AO/LA) was inversely 
associated with increase in BODN (beta = -2.3, 95% CI: 
-4.3 to -0.32), E to A waves ratio (beta = -1.5, 95% CI: 
-2.9 to -0.15), on natural logarithm scales and with rela-
tively high uncertainty (wide credible interval CI) iso-
volumic contraction time (IVCT) [beta = 1.48, 95% CI: 
0.02-3.0], left ventricular internal diameter end diastolic 
(LVIDd) [beta = 7.6, 95% CI: 0.13 = 15.0], left ventricular 
internal diameter end systolic (LVIDs) (beta = 4.7, 95% 
CI: 0.47-9.03), (considering both systolic and diastolic 
measures (MPI) [beta = 2.03, 95% CI = 0.11-4.01], ejec-
tion time (beta = - 6.6, 95% CI: -12.0 to -0.7) predicted 
BODN (Figure 1A, Table 1A). Chronological age per se 

was strongly associated with BODN (beta = 0.34, 95% CI 
= 0.24-0.46) while stacking of the cardiovascular models 
predicting BODN revealed cardiovascular physiologies 
predict BODN stronger than chronological age predicted 
BODN so that the model weight for chronological age 
turned to zero. The largest model weights were allocated 
to ejection time (ET: 27.5%), E/A ratio (26%), IVCT 
(21.5%), MPI (17%), AO/LA ratio (8%) that MPI by 46%, 
LVIDd by 19%, E/A ratio by 28.5%, IVCT (6%) with the 
rest also turned to zero.
For C57BL/6 mice, aortic valve diameter (beta = 2.3, 95% 
CI: 0.6-4.0), LA (beta = 1.65, 95% CI: 0.13-3.28), IVCT 
(beta = -1.79, 95% CI: -0.35 to -0.14), LVIDs (beta = 4.1, 
95% CI: 0.69-7.8) were significantly predicted BODN. 
With wide uncertainty (credible interval including zero) 
both AO/LA ratio and E/A ratio were inversely predicted 
BODN.
Using model averaging overall physiological measures of 
the cardiovascular system in C57BL/6 showed that MPI 
by 72.6%, LVIDs by 22%, E/A ratio by 0.5%, aortic di-
ameter (mm) by 1 %, and left atrial diameter (mm) by 4.5 
% predicted BODN and were included in the final model 
as cardiovascular physiology domains to quantify Physio-
Clock.
Neuromuscular Function. Rotarod test for CB6F1 indicat-
ing disturbed balance state predicted increase in BODN 
measured at day 2 (beta = -1.7, 95% CI: -2.86 to -0.62). 
Stacking of the models showed that the model assessed 
balance state at day 2 weighed 75.4% to predict BODN 
compared to day 1 (17.1%) and day 3 (7.5%). Therefore, 
we included rotarod test day 2 in the PhysioClock model. 
The lower the grip strength, the larger the BODN was 
(beta = -5.9, 95% CI: -10.5 to -1.6), and it was more ro-
bust when normalized to body mass (beta = -7.3, 95% CI: 
-11.4 to -3.8). Comparing models showed that the normal-
ized grip strength over body size was a stronger predictor 
of BODN at 98.3%.
For C57BL/6 mice, balance states at days 1 and 2 signifi-
cantly predicted BODN with day -2 model weight (53.2%) 
larger than day 1 (46.8%). Therefore day 2 was included 
in the Physiology Clock. Like CB6F1, the grip strength 
in C57BL/6 normalized over body mass was a stronger 
predictor of BODN (Figure 1B, Table 1B). In this strain, 
only grip strength normalized by body mass significantly 
predicted BODN with credible intervals excluding zero. 
However, wide CI (beta = -3.2, 95% CI = -6.4 to -0.18) 
showed some degree of uncertainty.
Cognitive Function. For CB6F1 mice, time of learning 
maze measured at day 1, 2 ,3 and 4 was associated with 
increased in PathoClock (day 1: beta = 1.13, 95% CI = 
0.18-2.07; day 2: beta = 0.87, 95% CI = 0.21-1.54; day 4: 
beta = 0.45, 95% CI = 0.11-0.78). The longer the learning 
process at day 1 the larger the PathoClock was. The longer 
maze test indicated poorer cognition and predicted larger 
PathoClock (day 5: beta = 0.49, 95% CI = 0.15-0.83; day 
12: beta = 0.92, 95% CI: 0.49-1.38). Likewise, results 
were detected for observed BODN (day 2: beta = 1.5, 95% 
CI: 0.22-2.79; day 4: beta = 0.62, 95% CI: 00.08-1.18) 
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Figure 1. Physiologic predictors of Body Organ Disease Number (BODN) in A) CB6F1, B) C57BL/6 mice. Grip: Grip strength, GriptoBM: 
normalized grip strength to body size, RotarodD1: rotarod at day 1, MazeD1: Barnes maze at day 1, ActivityD 1: Open field activity at day 1, Rear: 
Open field activity rearing, AO: aortic valve dimension in millimeter, LA: left ventricular valve, AO/LA: the ratio of AO to LA dimensions, E/
A, E wave to A wave ratio, IVCT: isovolumic contractile time millisecond (msec), IVRT: isovolumic relaxation time (msec), LVIDd: left ventricle 
internal diameter end diastole, IVIDs: left ventricle intra diameter end systole, MPI: myocardial performance, ET: ejection time., NM: neuromuscular, 
learn: learning stage, Cog: cognition, Act: Open field activity, Rear: Open field activity rearing, Run: Voluntary wheel running, CV: Cardiovascular 
physiology, LVMI: left ventricular mass index.

Physiologic Measures Coeff SE Low 95% CI Up 95% CI

Neuromuscular

Grip -2.97 1.13 -5.26 -0.81
Grip to body mass -3.68 0.93 -5.56 -1.93
Rotarod Day 1 -1.38 0.53 -2.43 -0.37
Rotarod Day 2 -1.72 0.57 -2.86 -0.63
Rotarod Day 3 -1.69 0.62 -2.93 -0.48

Learning

Maze Day 1 3.24 0.90 1.53 5.07
Maze Day 2 1.89 0.59 0.76 3.12
Maze Day 3 1.072 0.33 0.44 1.74
Maze Da 4 0.94 0.33 0.31 1.61

Cognition
Maze Day 5 1.87 0.39 1.13 2.67
Maze Day 12 0.72 0.22 0.30 1.16

Physical activity
Activity Day 1 -0.21 1.002 -2.16 1.77
Activity Day 2 -0.11 0.77 -1.63 1.38
Activity Day 3 -1.71 0.87 -3.47 -0.03

Rearing Day 1 Rear Day 1 1.49 0.55 0.44 2.59

Rearing Day 2 Rear Day 2 1.24 0.39 0.49 2.02

Rearing Day 3 Rear Day 3 0.44 0.42 -0.38 1.27

Running distance Distance -0.63 0.16 -0.98 -0.32

Cardiac Physiology

AO (mm) 1.38 3.13 -4.64 7.62
LA (mm) -0.51 0.56 -1.64 0.56
AO/LA -2.31 1.03 -4.39 -0.32
E/A -1.50 0.70 -2.93 -0.16
IVCT 1.49 0.76 0.02 3.03
IVRT -0.48 1.53 -3.47 2.52
LVIDd 3.80 1.93 0.07 7.66
LVIDs 2.36 1.09 0.24 4.52
MPI 2.03 0.99 0.12 4.01
ET -1.65 0.78 -3.23 -0.18
LVMI 2.90 1.14 0.72 5.19

Table 1A. Physiologic predictors of Body Organ Disease Number (BODN) in CB6F1 mice. 

Grip: Grip strength, Grip to body mass: normalized grip strength to body size, Rotarod Day 1: rotarod at day 1, Maze Day 1: Barnes maze at day 1, 
Activity Day 1: Open field activity at day 1, Rear: Open field activity rearing, AO: aortic valve dimension in millimeter, LA: left ventricular valve, 
AO/LA: the ratio of AO to LA dimensions, E/A, E wave to A wave ratio, IVCT: isovolumic contractile time millisecond (msec), IVRT: isovolumic 
relaxation time (msec), LVIDd: left ventricle internal diameter end diastole, IVIDs: left ventricle intra diameter end systole, MPI: myocardial perfor-
mance, ET: ejection time., Rearing: Open field activity rearing, Running distance: Voluntary wheel running, LVMI: left ventricular mass index.

Physiologic Measures Coeff SE Low 95% CI Up 95% CI

Neuromuscular

Grip -0.26 1.54 -3.30 2.78
Grip to body mass -1.64 0.80 -3.24 -0.09
Rotarod Day 1 -1.68 0.60 -2.90 -0.52
Rotarod Day 2 -2.27 0.83 -3.98 -0.72
Rotarod Day 3 -1.36 0.90 -3.15 0.36

Table 1B. Physiologic predictors of Body Organ Disease Number (BODN) in C57BL/6 mice. 
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Grip: Grip strength, Grip to body mass: normalized grip strength to body size, Rotarod Day 1: rotarod at day 1, Maze Day 1: Barnes maze at day 1, 
Activity Day 1: Open field activity at day 1, Rear: Open field activity rearing, AO: aortic valve dimension in millimeter, LA: left ventricular valve, 
AO/LA: the ratio of AO to LA dimensions, E/A, E wave to A wave ratio, IVCT: isovolumic contractile time millisecond (msec), IVRT: isovolumic 
relaxation time (msec), LVIDd: left ventricle internal diameter end diastole, IVIDs: left ventricle intra diameter end systole, MPI: myocardial perfor-
mance, ET: ejection time., Rearing: Open field activity rearing, Running distance: Voluntary wheel running, LVMI: left ventricular mass index.

and this association was stronger at day 2. Also, cogni-
tive decline was associated with an increase in BODN so 
that the maze test results at day 5 (beta=0.94, 95% CI= 
0.35-1.53) and 12 were strongly predictive of BODN 
(beta=0.92, 95%CI:0.49-1.38). The model stacking over 
the models including learning stages showed learning 
stage at day 1 (weight 62.8%) was a stronger predictor of 
BODN, and the cognition test at day 5 was stronger than 
day 12 (weight by 98.6%). Stacking over the learning and 
cognition test stage models showed that day 1 and day 5 
weighed more than other days (model weights for day 1: 
19.6%, and day 5: 78.9%). We included these two mea-
sures of learning and cognition in the PhysioClock model 
for CB6F1.
For C57BL/6 mice among learning and cognitive stages 
of the RWT maze test, day 1 and day 5 were the more 
robust predictors of BODN with model weights 61.5% 
and 99%, respectively. However, overall, the maze test 
in C57BL/6 was less predictive of BODN compared to 
CB6F1, but we included the day 5 maze test as it carried a 
larger weight to predict BODN.
Open field physical activity, rearing, and wheel running 
distance. For CB6F1 mice, open field physical activ-

ity indicated physical aptitude at day 3 significantly and 
inversely predicted BODN (beta = -1.7, 95% CI: -3.4 to 
-0.03). The higher rearing in physical activity, the larger 
the BODN was with a larger estimate at day 1 (beta = 1.49, 
95% CI: 0.44-2.59). However, the model weight favored 
the rearing activity at day 2 in prediction BODN weighed 
by 77.2% compared to day 1 (22.8%). We included day 
2 rearing activity in the final model determining Physio-
Clock. The mice with lower running distance had larger 
system morbidity measured by BODN (beta = -0.6, 95% 
CI: -0.98 to -0.3).
For C57BL/6 mice, open field physical activity was not 
significantly predictive of BODN. Stacking the mod-
els showed day 1 open field activity model weight was 
79.8%. Also, the rearing activity model at day 1 with 
57.4% weight explained BODN better than day 2 and 3. 
The total distance for the running wheel was inversely as-
sociated with BODN yet with a broad uncertainty (beta 
= -0.11, 95% CI = -0.46 to 0.23). We only included total 
distance in the final model to quantify PhysioClock.

Organ pathology heterogeneously integrates into body 
organ disease number

Learning

Maze Day 1 0.71 0.50 -0.27 1.72
Maze Day 2 0.73 0.56 -0.39 1.81
Maze Day 3 0.29 0.38 -0.47 1.03
Maze Da 4 0.42 0.32 -0.19 1.06

Cognition
Maze Day 5 0.38 0.26 -0.12 0.89
Maze Day 12 0.01 0.22 -0.42 0.45

Physical activity
Activity Day 1 1.38 1.59 -1.73 4.51
Activity Day 2 0.27 1.10 -1.86 2.45
Activity Day 3 0.55 1.13 -1.68 2.78

Rearing Day 1 Rear Day 1 -0.74 0.68 -2.09 0.56

Rearing Day 2 Rear Day 2 0.74 0.73 -0.66 2.20

Rearing Day 3 Rear Day 3 0.42 0.64 -0.82 1.67

Running distance Distance -0.11 0.18 -0.47 0.23

Cardiac Physiology

AO (mm) 2.31 0.87 0.62 4.05
LA (mm) 1.66 0.80 0.13 3.29
AO/LA -0.36 0.99 -2.32 1.56
E/A -0.93 1.98 -4.91 2.95
IVCT -1.80 0.85 -3.52 -0.14
IVRT 0.41 1.35 -2.23 3.08
LVIDd 2.60 1.69 -0.64 5.98
LVIDs 2.05 0.92 -0.56 3.69
MPI 1.55 1.09 -0.56 3.69
ET -1.31 1.23 -3.74 1.14
LVMI 3.11 1.49 0.29 6.16
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Overall, the BODN was higher for CB6F1 than C57BL/6 
at any age. The median and range of BODN were 2 (1-4) 
at 8 months, 4 (2-5) at 16 months, 5 (4-7) at 24 months, 6 
(5-7) at 32 months for CB6F1;and for C57BL/6 they were 
3 (2-4) at 8 months, 5 (4-6) at 16 months, 5 (4-7) at 24 
months, 6 (4-7) at 32 months.
Because the pathologies are ordinally graded based on 
severity, we used the monotonic effect that is applicable 
when the levels are not equidistant, and we showed that 
each organ’s pathology severity scores heterogeneously 
incorporated into body organ disease number (BODN). 
The result shows that the degree of organ pathology het-
erogeneously incorporated into BODN in both B6F1and 
C57BL/6 mice and some pathologies are more dominant 
for each strain (Figure 2A-B, Table 2A-B).
We included all pathologies that predict BODN with high 
accuracy using LOO-CV (k < 7). The estimates of each 
pathology level incorporated into BODN are depicted in 
Figure 2A and B.
The complete model including all organs’ pathology to 
predict BODN explained variability of BODN by 87% 
and 88% for C57BL/6 and CB6F1, respectively. We quan-
tified PathoClock from the model, including all organ sys-
tems to predict BODN using age as levels. There is inter-
mouse variability of PathoClock even within the same 
chronological age. Mean PathoClock was mainly larger 
in CB6F1 compared to C57BL/6, especially at age 28 
months (6.5 ± 1.10 vs. 6.3 ± 0.64) and 32 months (7.6 ± 
1.5 vs. 7.3 ± 0.65), respectively. The between-strain vari-
ability (variance) over the age spectrum was 3.3 months. 
In CB6F1, cardiovascular-related pathologies with higher 
uncertainty (the narrow credible intervals excluding 0) 
were significantly incorporated into BODN (Figure 2A, 
Table 2A).
While specific pathologies of each organ variably incor-
porate into BODN of the renal system, only kidney min-
eral disposition had a wide uncertainty in CB6F1. In the 
C57BL/6 mice, in addition to mineral disposition, amyloid 
accumulation and acute tubular damage had wide credible 
intervals and large uncertainty predicting BODN (Figure 
2B, Table 2B). In C57BL/6, the majority of liver-related 
pathologies were incorporated into BODN yet heteroge-
neously. Of note, incorporation of the regeneration state in 
BODN in C57BL/6 mice was larger than of the degenera-
tion state. Interestingly, lymphoid aggregates in almost all 
organs are significantly incorporated into BODN. 

Correlation of pathoClock, physioClock, and chrono-
logical age is strain dependent

To understand how well the two final models, the one 
including all pathology levels to develop PathoClock and 
the one including physiology measures to quantify Phys-
ioClock, explained BODN, we used the Leave-One-Out 
R-squared (LOO_R2) method. The model including all 
pathologies to predict BODN for C57BL/6 (PathoClock), 
explained about 87% of BODN (LOO_ R2 = 0.87), while 
the model used to develop PhysioClock explained BODN 
by 64% (LOO_R2 = 0.64). For CB6F1 mice the models 

to develop PathoClock explained BODN by 94% (LOO_
R2 = 0.94), and the model used to develop PhysioClock 
explained BODN by 67% (LOO_R2 = 0.67). In both 
strains the models from which PathoClock was extracted 
explained BODN better than PhysioClock; however, in 
CB6F1 the overall model performance was better than in 
C57BL/6.
The distributions of PathoClock and PhysioClock are 
depicted in interactive Figure 3. The correlation of Patho-
Clock and chronological age was r = 0.75 in C57BL/6, 
but in CB6F1 the correlation was larger (r = 0.80) (Table 
3). In some individual mice, PathoClock was smaller than 
BODN, while in some mice, it was larger. These results 
suggest variability in incorporating pathology levels in the 
same age group and across ages. Also, a larger impact for 
pathology levels can be manifested as a larger PathoClock 
in mice within the same age group or in an older group. 
In contrast, a smaller PathoClock at an older age may 
suggest the minor impact of pathology levels on BODN 
despite an older age. This result opens a roadmap to study 
resilience and body system reactions in relation to pathol-
ogy (Figure 3A-B).
Correlation between PhysioClock and age at euthanasia 
in CB6F1 mice was r = 0.71 with variability across age 
groups by 3.72 months (sd = 3.7), and the correlation 
of PhysioClock with age at euthanasia was r = 0.68 for 
C57BL/6 with 6.5 months variability in age (sd = 6.5; 
Table 3). Some mice with higher BODN had lower Phys-
ioClock (at middle age), suggesting physiological resil-
ience to the development of pathology. However, it could 
also be due to an insufficient adaptation response. Despite 
the high correlation, the patterns of both PathoClock and 
PhysioClock in relation to chronological age were not 
linear, and exponential patterns were detected (Figure 3C-
D). 

PhyisoAge and PathoAge align with chronological age 
in a strain dependent manner

The common approach to measuring the rate of aging with 
chronological age has been to regress phenotype measure-
ments over chronological age. Likewise, we developed 
PhysioAge and PathoAge by regressing the physiological 
and pathological measurements on chronological age and 
determining the R2 of the model using the Leave-One-Out 
approach (LOO_R2) and then assessing the correlation 
between predicted age and chronological age for Patho-
Age and PhysioAge. In C57BL/6 mice, PathoAge, having 
a larger LOO_R2 and stronger correlation with chrono-
logical age, explained chronological age better than Phsy-
ioAge. PathoAge variability across age was 2.5 months 
while the variability of PhysioAge was 3.9 months (Table 
3). In CB6F1, both PathoAge and PhysioAge strongly 
explained chronological age, with PathoAge (LOO_R2 = 
0.93) explaining chronological age better than PhysioAge 
(Loo_R2 = 0.7). In C57BL/6 mice, there was a slow slope 
of correlation between PhysioAge and ChAge so that the 
PhysioAge at younger ages had similarities with middle 
age groups (Figure 4). 
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Figure 2. Pathology levels of seven organs in A) CB6F1 and B) C57BL/6 male mice incorporating Body Organ Disease Number. Abbreviations: 
Neph: nephropathy, lymph_agg: lymphocyte aggregation, Infarct: infarction, Kidney_mineral: mineral deposition in kidney, Acute, tub_degen: 
acute tubular degeneration, perioport_inf: periportal infiltration, Hep_Degen: hepatic degeneration, BD_Hyper: bile duct hyperplasia, Ito_cell: 
itocell hyperplasia, Microgranol: microgranuloma, Hep_lipidosis: hepatic lipidosis, Alveol acid: alveolar macrophage pneumonia, alveol_hist: 
alveolar histiocytosis, Resp_hyper: respiratory duct hyperplasia, Vas_inflam: perivascular inflammation, exoc_atroph: exocrine atrophy, Atheros: 
atherosclerosis, Myco_fib: myocardial fibrosis, Valve_Myxom: valvular myxomatosis, thalamic mineral: mineral deposition in thalamus area, 
Regeneration: skeletal muscle degeneration, regeneration: skeletal muscle regeneration, malignant: malignant cancer. All the pathology levels are 
compared to no lesions [0] as the reference.

Systems Disease Beta Coeff SE Low 95% CI Up 95% CI

Renal

Nephropathy [1] 0.8740 0.1610 0.5750 1.2190
Nephropathy [2] 0.5890 0.5890 0.3875 0.8215
Nephropathy [3] 0.1900 0.0340 0.1260 0.2650
Nephropathy [4] 0.1910 0.036 0.1280 0.2670
Lymph aggregate [1] 0.1998 0.0729 0.0621 0.3564
Lymph aggregate [2] 0.1702 0.0621 0.0621 0.3564
Lymph aggregate [3] 0.2220 0.0810 0.0690 0.3960
Lymph aggregate [4] 0.1406 0.0513 0.0437 0.2508
Kidney Mineralization [1] 2.5510 0.6481 1.3340 3.8607
Interstitial nephritis [1] 0.1375 0.0825 -0.0175 0.3150
Interstitial nephritis [2] 0.1485 0.0891 -0.0189 0.3402
Interstitial nephritis [3] 0.1265 0.0759 -0.0161 0.2898
Interstitial nephritis [4] 0.1265 0.0429 -0.0161 0.2898

Liver

Periportal inflammation [1] 0.1704 0.0984 0.00216 0.3912
Periportal inflammation [2] 0.2130 0.1230 0.0027 0.4890
Periportal inflammation [3] 0.3195 0.1845 0.0036 0.7330
Bile duct hyperplasia [1] 0.6468 0.1862 0.2842 1.0290
Bile duct hyperplasia [2] 0.6600 0.1900 0.2900 1.0500
Ito Cell hyperplasia [1] 1.7182 0.5664 0.6549 2.8760
Lymph aggregate [1] 0.4958 0.1369 0.2405 0.7844
Lymph aggregate [2] 0.4288 0.1184 0.1950 0.6360
Lymph aggregate [3] 0.3886 0.1073 0.1885 0.6148
Microgranular aggregate [1] 0.3224 0.0858 0.0208 0.1248
Microgranular aggregate [2] 0.3348 0.0891 0.1620 0.5265
Microgranular aggregate [3] 0.2728 0.0726 0.1386 0.4290
Microgranular aggregate [4] 0.2852 0.0759 0.1449 0.4485
lipidosis [1] 0.3245 0.3025 -0.1925 0.9570
lipidosis [2] 0.1180 0.1100 -0.0700 0.3480
lipidosis [3] 0.1357 0.1265 -0.0805 0.4002

Respiratory

Alveolar acidosis [1] 0.4343 0.2021 0.0473 0.8428
Alveolar acidosis [2] 0.5656 0.2632 0.0616 1.0976
Alveolar histiocytosis [1] 0.7392 0.2128 0.3360 1.1872
Alveolar histiocytosis [2] 0.5676 0.1634 0.2580 0.9116
Bronchial Inflammation [1] 0.3124 0.1672 0.00004 0.6512
Bronchial Inflammation [2] 0.3850 0.2090 0.00006 0.814
Inessential pneumonia [1] 0.0616 0.1892 -0.2904 0.462
Interstitial pneumonia [2] 0.0770 0.2365 -0.3630 0.5775
Lymph aggregate [1] 0.3535 0.1295 0.1225 0.6475
Lymph aggregate [2] 0.3737 0.1369 0.1295 0.6845
Lymph aggregate [3] 0.2727 0.0999 0.0945 0.4995
Respiratory hyperplasia [1] 0.4005 0.1530 0.1080 0.7245
Respiratory hyperplasia [2] 0.2492 0.0952 0.0672 0.4480
Respiratory hyperplasia [3] 0.2225 0.0850 0.0600 0.4000

Pancreas

Exocrine atrophy [1] 1.0640 0.8596 0.2044 3.5000
Exocrine atrophy [2] 1.3490 1.08985 0.25915 4.4375
Lymph aggregate [1] 0.9360 0.7930 0.1352 3.1200
Lymph aggregate [2] 1.3140 1.1132 0.1898 4.3800

Table 2A. Organ system histology levels predicting Body Organ Disease Number in CB6F1 mice. 
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CNS Thalamic mineralization [1] 3.8187 0.8417 2.2818 5.5921

Sensory
Cataract [1] 0.7938 0.1512 0.504 1.1172
Cataract [2] 0.2835 0.0540 0.1800 0.3990
Cataract [3] 0.7560 0.1440 0.4800 1.0640

Muscle
Muscle regeneration [1] 3.2460 0.7061 1.9342 4.6973
Muscle degeneration [1] 3.2169 1.5585 0.3723 6.5585

Pancreas

Exocrine atrophy [1] 1.0640 0.8596 0.2044 3.5000
Exocrine atrophy [2] 1.3490 1.08985 0.25915 4.4375
Lymph aggregate [1] 0.9360 0.7930 0.1352 3.1200
Lymph aggregate [2] 1.3140 1.1132 0.1898 4.3800

Cancer Any malignant tumor [1] 1.5186 0.7279 0.1156 2.9808

Systems Diseases Coeff SE Low 95% CI Up 95% CI

Renal

Nephropathy [1] 0.3672 0.1152 0.1584 0.6228
Nephropathy [2] 0.2652 0.0780 0.1144 0.4498
Nephropathy [3] 0.1224 0.0384 0.0528 0.2041
Nephropathy [4] 0.2346 0.0736 0.1012 0.3979
Lymph aggregation [1] 0.1344 0.0840 -0.0224 0.3080
Lymph aggregation [2] 0.1776 0.1110 -0.0296 0.4070
Lymph aggregation [3] 0.1584 0.0990 -0.0264 0.3630
Hydronephrosis [1] 0.5684 0.2726 0.0522 1.1368
Hydronephrosis [2] 0.4018 0.1927 0.0369 0.8036
Amyloidosis 1.8581 1.3438 -0.7660 4.5509
Infarction [1] 0.1785 0.2499 -0.3009 0.6834
Infarction [2] 0.1680 0.2352 -0.2832 0.6432
Kidney mineralization 1.0949 0.6853 -0.2180 2.4723
Tubular degeneration 0.7806 1.2956 -1.7512 3.3652

Liver

Periportal infiltration [1] 0.1440 0.0648 0.0252 0.2862
Periportal infiltration [2] 0.2080 0.2080 0.0364 0.4134
Periportal infiltration [3] 0.2400 0.1080 0.0420 0.4770
Periportal infiltration [4] 0.1840 0.0828 0.0322 0.3657
Hepatic degeneration [1] 0.2856 0.0960 0.1176 0.4968
Hepatic degeneration [2] 0.4046 0.1360 0.1666 0.7038
Hepatic degeneration [3] 0.2618 0.0880 0.1078 0.4554
Hepatic degeneration [4] 0.2261 0.0760 0.0931 0.3933
Bile Duct hyperplasia [1] 0.1368 0.0576 0.0288 0.2610
Bile Duct hyperplasia [2] 0.1596 0.0672 0.0336 0.3045
Bile Duct hyperplasia [3] 0.2280 0.0960 0.0480 0.4350
Bile Duct hyperplasia [4] 0.2280 0.0960 0.0480 0.4350
Ito Cell hyperplasia 1.5260 0.7330 0.1411 3.0196
Lymph aggregation [1] 0.2492 0.0756 0.1120 0.4088
Lymph aggregation [2] 0.2848 0.0864 0.1208 0.4672
Lymph aggregation [3] 0.1513 0.0459 0.0680 0.2482

Table 2B. Organ system histology levels predicting Body Organ Disease Number in C57BL/6 mice. 

SE: Standard error, CV: cardiovascular system, CNS: central nervous system.

CV

Atherosclerosis [1] 1.7390 0.3700 1.0300 2.5100
Atherosclerosis [2] 0.5875 0.1250 0.3500 0.8500
Fibrosis [1] 0.9030 0.3080 0.3080 1.5400
Fibrosis [2] 0.3741 0.1276 0.1276 0.638
Valve myxoma [1] 0.7645 0.2200 0.3465 1.2100
Valve myxoma [2] 0.6116 0.1760 0.2640 0.9768
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Lymph aggregation [4] 0.1869 0.0567 0.0840 0.3066
microgranuloma [1] 0.2639 0.0754 0.1218 0.1595
microgranuloma [2] 0.1729 0.0494 0.0798 0.2755
microgranuloma [3] 0.2912 0.0832 0.1344 0.4640
microgranuloma [4] 0.1638 0.0468 0.0756 0.2610
Telangiectasia [1] 0.4653 0.3525 -0.1755 1.1655
Telangiectasia [2] 0.5148 0.3901 -0.2028 1.3468
Hepatic lipidosis [1] 0.4118 0.1131 0.2175 0.6641
Hepatic lipidosis [2] 0.4686 0.1287 0.2475 0.7557
Hepatic lipidosis [3] 0.2556 0.0702 0.135 0.4122

Respiratory

Hepatic lipidosis [1] 0.4118 0.1131 0.2175 0.6641
Hepatic lipidosis [2] 0.4686 0.1287 0.2475 0.7557
Hepatic lipidosis [3] 0.2556 0.0702 0.135 0.4122
Alveolar histiocytosis [1] 0.4524 0.2378 -0.0116 0.9280
Alveolar histiocytosis [2] 0.3198 0.1681 -0.0082 0.6560
Interstitial pneumonia [1] 0.3016 0.3276 -0.4316 0.9464
Interstitial pneumonia [2] 0.2726 0.2961 -0.3901 0.8554
Lymph aggregation [1] 0.7749 0.1890 0.4221 1.1718
Lymph aggregation [2] 0.0984 0.0240 0.0536 0.1488
Lymph aggregation [3] 0.1230 0.0301 0.0670 0.1860
Lymph aggregation [4] 0.1968 0.0480 0.1072 0.2976
Respiratory Hyperplasia [1] 1.5328 1.0560 0.3808 3.9001
Respiratory Hyperplasia [2] 1.5745 1.1055 0.3986 4.3550
Vascular inflammation [1] 0.2109 0.1221 -0.0222 0.4736
Vascular inflammation [2] 0.0969 0.0561 -0.0119 0.2176
Vascular inflammation [3] 0.1254 0.0726 -0.0154 0.2816
Vascular inflammation [4] 0.1254 0.0726 -0.0132 0.2816

Pancreas

Lymph aggregation [1] 0.5670 0.2646 0.0567 1.1151
Lymph aggregation [2] 0.3240 0.1512 0.0324 0.6372
Lipidosis [1] 0.5184 0.3601 -0.2272 1.2864
Lipidosis [2] 0.5508 0.3825 -0.1428 1.3668
Fibrosis [1] 0.2754 0.1802 -0.0578 0.6562
Fibrosis [2] 0.2673 0.1749 -0.0561 0.6369
Fibrosis [3] 0.2592 0.1696 -0.0544 0.6176
Exocrine atrophy [1] -0.0096 0.1120 -0.2240 0.2144
Exocrine atrophy [2] -0.0093 0.0527 -0.2201 0.2077
Exocrine atrophy [3] -0.0105 0.1225 -0.2485 0.2345

CV

Atherosclerosis [1] 0.6210 0.2438 0.1748 1.1408
Atherosclerosis [2] 0.7155 0.2809 0.2014 1.3144
Myocardial fibrosis [1] 0.4758 0.2562 -0.0366 1.0004
Myocardial fibrosis [2] 0.2964 0.1596 -0.0228 0.6232
Valvular myxomatosis [1] 0.6768 0.2160 0.2784 1.1328
Valvular myxomatosis [2] 0.7191 0.2295 0.2958 1.2036

CNS Thalamic mineralization 2.8945 1.2855 1.1442 5.9831

Sensory
Cataract [1] 1.3260 0.2924 0.8092 1.9584
Cataract [2] 0.3315 0.0731 0.2023 0.4896
Cataract [3] 0.2730 0.0602 0.1666 0.4032

Muscle
Muscle regeneration [1] 1.9779 0.4315 1.1847 2.8763
Muscle degeneration [1] 1.1812 0.5901 0.0448 2.3558

Cancer Any malignant tumor [1] 0.5266 0.6146 -0.6678 1.7486

SE: Standard error, CV: cardiovascular system, CNS: central nervous system.
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Figure 3. The distribution of PathoClock and PhysioClock by age. To see the 3D figures, click on the included links. PathoClock is determined 
by how each pathology level incorporates into Body Organ Disease Number (BODN). A. PathoClock in CB6F1 mice and age at euthanasia. B. 
PathoClock in C57BL/6 mice and age at euthanasia. PhysioClock was determined by how each physiological measures predicted BODN. C. CB6F1 
PhysioClock and age at euthanasia. D. C57BL/6 PhysioClock and age at euthanasia.
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Figure 4. Developing PathoAge, pathologies were included in a model to predict chronological age in both A. CB6F1 and B. C57BL/6. Developing 
PhysioAge, the same physiological measures as the ones used in Physioclock, were regressed over chronological age in both C. CB6F1 and D. 
C57BL/6. While PathoAge are almost linearly predict chronological age with some subtle degree of uncertainty, PhysioAge in both strains endures 
more uncertainty to predict chronological age. The size and color indicate the increase in number of body organ disease number (BODN).
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Discussion

In this study, physiology performance and pathology data 
were generated from C57BL/6 and CB6F1 male mice 
ranging from 4 to 28 months of age. As a result of these 
data, pathology-based multimorbidity as an outcome 
was developed and is reported for the first time, with the 
pathological and physiological determinants designated 
as PathoClock, and PhysioClock, respectively. Using 
histopathology lesion scores in each organ as a proxy for 
diseases, the morbidity of each organ system was defined 
as at least two low pathology grades (= 1) or one higher 
pathology grade (> 1). The sum of the organ systems’ 
morbidities determined the Body Organ Disease Number 
(BODN) as a new outcome representing a global index of 
health at the body organ system level, resembling what 
was recently developed and validated in a multimorbid-
ity study of human aging [16]. The degree to which each 
organ-specific pathology level incorporates into BODN 
was assessed. The mouse strain-specific pathology levels 
predicting BODN was termed PathoClock, a counterpart 
of Body Clock in humans [16]. Because physiological 
responses can vary by age and disease level, BODN was 
used as an outcome for determining physiological pre-
dictors developing PhysioClock which association with 
chronological age was assessed. The results showed that 
various levels of the pathology of various organs heterge-
neously incorporate into BODN. CB6F1 mice had a larger 
BODN and PathoClock compared to C57BL/6 mice in the 
same age group.
Interestingly, the two strains had distinct pathological and
physiological components that predicted BODN. While 
aortic valve (AO) and left atrium (LA) dimensions sig-
nificantly predicted BODN in C57BL/6 mice, in CB6F1 
mice only the AO to LA ratio was a significant predictor 
of BODN. There was an inverse association of the E/A 
ratio with BODN in CB6F1. A decreased E/A ratio which 
is usually an indicator of diastolic heart failure suggests fi-
brosis so that the left ventricle cannot be filled with blood 
during the diastolic period between two contractions.
Similarly, heart failure in humans is one of the age-related 
changes incorporated into BODN [16] and a health burden 
underlying hospitalization of older adults [35]. Moreover, 
in older adults decrease in the E/A ratio incorporates 

into low exercise intolerance. The results in CB6F1 mice 
showed both an inverse association of voluntary exercise 
(running distance) and E/A ratio with BODN.
In both strains, while the Left ventricle dimension in end-
systole (LVIDs) significantly predicted BODN, the left 
ventricle dimension in end-diastole (LVIDd) predicted 
BODN but with larger uncertainty. Shortening ejection 
time (ET), which has been suggested as a single indicator 
of human heart failure [36-38] , significantly predicted 
BODN in CB6F1. A human study of echocardiographic 
measures has shown that a combination of both systolic 
and diastolic impairments is a better predictor of heart 
failure [37], as such a measure like the myocardial perfor-
mance index (MPI) was a significant predictor of BODN 
in CB6F1, and it also predicted BODN in C57BL/6, albeit 
with some uncertainty. Left ventricular hypertrophy index 
normalized by tibial length (LVMI), an age-related change 
significantly predicted BODN in both strains. Cardiac 
physiology markers were associated with BODN more 
strongly in CB6F1 mice than C57BL/6. Having more 
uncertainties in cardiac physiology measures, C57BL/6 
mice might manifest cardiac physiology changes late in 
life or have physiological adaptation to histopathologi-
cal changes later. Although PhysioClocks for both strains 
were associated with chronological age at euthanasia, the 
correlation was stronger in CB6F1, and there was larger 
variability in PhysioClock in C57BL/6 than in CB6F1. 
Replicative studies and response to interventions are re-
quired to replicate cardiac physiology changes in response 
to pathology.
There was variability in both organ physiology and pa-
thology across strains and age groups. The ability to 
maintain neuromuscular and cognitive performance is an 
important component of healthspan in aging. Impaired 
physical activity and function are both causes and conse-
quences of disease in humans [39]. Albeit heterogeneous, 
older C57BL/6 mice had uncertainties in physical activity 
capacity in relation to BODN, while CB6F1 showed de-
creased balance, physical activity, lower running distance, 
and lower grip strength, all of which predicted increased 
BODN. All of these measures had a larger uncertainty in 
C57BL/6 to predict BODN. One possible explanation for 
the wider uncertainty of physiologic measures in the pre-
diction of BODN in C57BL/6 is that some male C57Bl/6 
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LOO-R2 (Sd or sigma)
C57BL/6

Correlation (r) with 
ChAge (C57BL/6)

LOO-R2 (Sd or sigma) 
CB6F1

Correlation (r) with 
ChAge (CB6F1)

Model For PhysioClock 0.87, (sd = 5.7 months) 0.76 0.94, (sd = 7.4 months) 0.80

Model For PhysioClock 0.64, (sd = 6.7 months) 0.68 0.67, (sd = 3.7 months) 0.73

Model for PathoAge 0.86, (sigma = 2.5 months) 0.98 0.93, (sigma = 2 .4 months) 0.98

Model for PhysioAge 0.75, (Sigma = 3.9 months) 0.83 0.70, (Sigma = 4.0 months) 0.93

Table 3. Leave-One-Out (LOO) R squared of models for developing PathoClock, PhysioClock, PathoAge and PhysioAge and the correlation with 
chronological age. 

Sd: standard deviation for model levels in multilevel analyses, sigma is the variance of Gaussian family for continuous outcome. ChAge: Chronologi-
cal Age.



mice at age 4 months might have already commenced 
physiological changes in response to pathology so that 
they are already similar to middle-aged mice. However, 
the C57BL/6 PhysioClock at older ages showed a rela-
tively slow slope over the age spectrum which suggests 
resilience in physical function due to regenerative capac-
ity in skeletal muscle in this strain as shown in their histo-
pathology and association with BODN.
CB6F1 mice showed a more significant cognitive decline, 
attenuated volitional physical activity, disturbed balance, 
and diminished motor function in predicting BODN, 
while such functional measures did not significantly pre-
dict BODN in C57BL/6. The results suggest that C57BL/6 
are also more resilient to functional decline than CB6F1 
and/or might develop functional decline variability. While 
these two strains are commonly used in the study of nor-
mal aging, our results suggest strain-specific variability in 
pathological and physiological domains. However, mech-
anisms of functional resilience and whether there is more 
variability in functional impairment in C57BL/6, despite 
developing pathologies, can be explored by comparing 
PathoClock and PhysioClock in both strains and measur-
ing in-depth mechanistic markers in response to anti-aging 
interventions.
Recent reports in both CB6F1 and C57BL/6 mice show 
different organ aging, suggesting higher pathology scores 
in the cardiovascular system in CB6F1 and early onset 
of liver and kidney aging in C57BL/6 and organ-specific 
response to anti-aging interventions [40]. Because the ag-
ing kidney and liver show early and dominant age-related 
characteristics in C57BL/6, the inclusion of physiological 
markers of such organs to predict BODN may improve 
PhysioClock for both strains. Moreover, adding more 
organs to pathological studies, and obtaining more infor-
mation by applying artificial intelligence to the images 
to extract high throughput information on echocardiog-
raphy, pathology and other imaging can be incorporated 
into BODN and can update PathoClock and PhysioClock 
whenever this information is available.
In both strains, PathoClock was more strongly correlated 
with chronological age, with the CB6F1 PathoClock hav-
ing a larger correlation, and we found variability in com-
ponents of pathology and physiology across age groups. 
Recently, a new study applied the frailty component 
on chronological age FRAIL (Frailty Inferred Geriatric 
Health Timeline) and measuring lifespan with AFRAID 
(Analysis of Frailty and Death,) in C57BL/6 mice pre-
dicted age with r2 = 0.64 in the test data [12]. Our models 
based on pathology or physiology more significantly 
predicted the animal’s chronological age with PathoAge 
in both strains and PhysioAge mainly in CB6F1. In ad-
dition, PathoClock based on BODN showed a stronger 
correlation with chronological age (in CB6F1, r = 0.8; in 
C57BL/6, r = 0.76), and likewise, PhysioClock had larger 
correlation with chronological age (CB6F1: r = 0.73; 
C57Bl/6: r = 0.68). In both strains, the models from which 
PathoClock was extracted explained BODN better than 
PhysioClock, with model performances better for CB6F1 

than C57BL/6. Similarly, PathoAge better predicted 
chronological age than PhysioAge with a larger correla-
tion between observed and predicted chronological age. 
One possible explanation for the different correlations 
is the wider variability and uncertainty in physiological 
measures in predicting BODN and chronological age. 
Also, the data showed an exponential association between 
physiological-based predicted age and chronological rath-
er than linear. Another possibility is that we had smaller 
sample sizes for physiological measurements (30 mice in 
C57BL/6 and 35 in CB6F1). 
In CB6F1 mice, the lower running distance was associated 
with larger BODN and Maze tests, and physical activity 
at day 3 and rearing activity at days 1 and 2 were signifi-
cantly predicted BODN. However, these results were not 
significant in CB57BL/6. One possible explanation is that 
functional decline occurs later in life and histopathologic 
changes in other organs appear sooner, as epidemiological 
studies have reported in humans. Cognitive decline and 
disability are mainly saturated late in life. In this study, 
the mice were euthanized at a specific time, and perhaps 
longer follow-up can test this surmise. Moreover, there is 
strain discrepancy so that C57Bl/6 showed more regen-
eration than degeneration in skeletal muscle, suggesting 
the regenerative capacity of skeletal muscle maintains the 
physical activity in this mouse strain. Further studies with 
longer follow-up time and serial measurements of physi-
cal activities in both sexes are required to shed additional 
light on possible mechanisms underlying these results. To 
better delineate pattern recognition, replication of these 
analyses including a larger sample size would be helpful.
The two clocks developed, PathoClock and PhysioClock, 
are strong healthspan tools. In human aging, metrics that 
are statistically trained on phenotypes also predict health 
states [16]. One caveat of basing the data on chronological 
age is that there is arbitrarily consideration of chronologi-
cal age as a variable outcome, while chronological age is a 
fixed number in an equation. Moreover, biomarker-based 
measures can fluctuate irregularly across age spectrums 
due to a variety of reasons such as adaptation, resilience, 
or severe organ damage. However, prediction of health 
outcomes like BODN can capture biological and patho-
physiological changes independent of chronological age, 
as well as the variability of biological age. While BODN 
and PathoClock can be used at the endpoint for healths-
pan, the PhysioClock can be used as a repeated measure 
in longitudinal studies to predict healthspan over time. 
The results of previously measured pathologies can be 
applied in the Bayesian models we developed, along with 
physiological measures, to predict BODN in aging studies 
using mice and can be used dynamically to further delin-
eate mechanisms of aging [41]. Including components 
of pathology and or physiology into the models provides 
the ability to predict chronological age and integration 
into global health status measured as BODN. Our study 
revealed between- and within-age variabilities in Patho-
Clock and PhysioClock, as well as between-strain vari-
abilities.
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For the first time, we applied BODN to histopathology 
and developed PathoClock and PhysioClock to recapitu-
late human BODN and Body Clock, which can be used 
to compare the rate of aging across various rodent strains 
and other mammalian species. Our findings are novel as, 
for the first time, we employed human BODN histopathol-
ogy, developing the PathoClock and PathoAge that show 
the rate of aging independent of chronological age, resem-
bling human BODN and Body Clock. Furthermore, these 
tools can be used in other mouse strains to compare the 
rate of aging across various rodent strains and other mam-
malian species. Considering organ-specific aging in mouse 
strains and heterogeneity in organ aging in humans, it is of 
paramount importance to disentangle individual-specific 
and organ-specific aging and how each disease state and 
adaptation state incorporates into the whole-body system 
as a function of BODN. The PathoClock and PhysioClock 
can be employed as translatable tools, recapitulating the 
human Body Clock. These clocks can be used across vari-
ous species and in both males and females to determine 
common and distinguished pathologies and physiological 
assessments applied to age-related healthspan. 
Impractical pan-organ histopathology studies in humans 
might limit the translatability of non-human histopatho-
logic tools. One possibility is to compare human organ-
oids with histopathology studies of other species, as the 
mammalian body systems are one entropy with interac-
tions between systems. Therefore, the study of organoids 
could limit us from capturing the effect of one organ on 
others as we captured by BODN. Clinically defined dis-
eases in humans usually track well with underlying histo-
pathologic changes. Thus, determining animal models that 
can recapitulate clinically defined human multimorbidity 
is still crucial for translational purposes.
In this study, we applied the human BODN and Body 
Clock algorithms to histopathology data collected in two 
widely used mice strains. Future studies and replications 
in the same strains and/or in other mouse strains will dis-
entangle similarities and differences across various strains. 
Quantifying individual Clock levels can be used to more 
precisely understand mechanisms of aging [41-43] and 
assess the rate of aging using cross-species translational 
tools to disentangle age-related similarities and differences 
and assess organ-, strain- and sex-specific effects of ag-
ing intervention studies. Using Bayesian inference allows 
us to predict such Clocks in established as well as new 
models and updates can be made when new information at 
physiological or pathological data become available.
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