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Abstract
Background: The pathological development of Diabetic retinopathy (DR) is an intricate process with multiple 
steps, and implicates a battery of dysregulated genes and regulators. We aimed to investigate the pathological 
mechanism of DR involving the regulatory association among H19, miR-29b and FOXO4.
Methods: Sprague-Dawley (SD) rats were used to establish the diabetes mellitus (DM) model by injection 
streptozotocin. The levels of miR-29b, H19 and the mRNA level of FOXO4 were detected by qRT-PCR. The 
expression of FOXO4 at protein level was assessed by Western blot assay. The apoptosis of rMC-1 cells were 
analyzed by flow cytometry. To further investigate the relationship between H19 and miR-29b, the RIP and 
pull down assays were performed.
Results: The expression of H19 and FOXO4 were enhanced obviously, and the level of miR-29b was decreased 
in the retina tissues of DM rats and high glucose (HG)-treated rMC-1 cells. HG, as well as over-expression of 
H19, stimulated the apoptosis of rat retinal Müller cells. Knockdown of H19 reversed HG stimulation on cell 
apoptosis and FOXO4 up-regulation. RIP assay and RNA pull-down assay indicated that H19 was a target 
of miR-29b and inhibition of miR-29b reversed H19 down-regulation effect on cell apoptosis and FOXO4 
expression. Down-regulation of FOXO4 reversed the effect of miR-29b knockdown on cell apoptosis.
Conclusion: MiR-29b targeting lncRNA-H19 mediates the apoptosis of rat retinal Müller cells via regulating 
FOXO4 in diabetic retinopathy.
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pathogenesis attributing to implicating multiple inter-
connected mechanisms resulting in cellular damage, 
even and apoptosis in the retina [6]. Hence, it is essential 
to explore the potential mechanism of DR to bring the 
novel insight for the clinical therapy.
As a class of non-coding RNA without the capacity 
of coding protein, long non-coding RNA (lncRNA) is 
longer than 200 nts [7,8]. Emerging researches indicat-
ed that lncRNA were involved in genetic, epigenetic 
and post-transcriptional modulation in various pro-
cesses or mechanisms of biology and pathology [9-12]. 
LncRNA-H19 located at 11p15.5 locus is expressed 
highly in fetus but decreasingly after birth, and also 
is implicated in the mechanisms of diverse diseases 
[13]. For instance, H19 serves as a carcinogenic gene in 
gastric cancer [14], colorectal cancer [15] and glioma cells 
[16]. In addition, Zhao reported that H19 promotes the 
apoptosis of hippocampal neuron in streptozotocin-in-
duced DM rat model via Wnt signaling [17]. However, the 
underlying mechanism of H19 involved in DR remains 
unclear. 
As another class of non-coding RNA without the capaci-
ty of coding protein, microRNA (miRNA) is always func-
tion in post-transcriptional processes via binding with 

INTRODUCTION
As the one of the most frequent metabolic disorder 
caused by multiple factors, diabetes mellitus (DM) 
is a disease with high incidences worldwide and the 
increased prevalence in the last decade [1,2]. With the 
hallmark of chronic hyperglycemia attributing to the 
defects in insulin secretion, action or both, DM will 
implicate the function of multi-organs, such as kidney, 
blood vessels, eyes and heart [3,4], which causes great 
pain for the DM patients and their family due to the 
complications of DM. Diabetic retinopathy (DR) is one 
of the most vital DM complications with harrying ap-
proximately 20% of adult DM patients, which is one 
of the etiological factor of vision loss worldwide [5]. 
The development of DR presents with highly complex 
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3’UTR of target mRNAs to inhibit mRNA translation or 
degrade mRNA [18], and is well-documented regulator 
in various diseases [19-21]. In the recent studies, lager 
numbers of miRNAs have been reported to mediate the 
occurrence and development of DM-related disorders, 
including miR-29b which has been reported to be ex-
pressed aberrantly in DM [22]. Moreover, miR-29b was 
predicted to have the binding site with H19. Hence, we 
hypothesize that miR-29b participates in the underly-
ing mechanism of H19 in DR. 
Forkhead box O4 (FOXO4) has reported to be closely 
associated with the cell apoptosis in several diseases 
[23,24]. In experimental retinal detachment, the expres-
sion of FOXO4 was increased by Resveratrol treatment 
to prevent vision loss [25]. Thus, we aimed to investigate 
the pathological mechanism of DR involving the regula-
tory association among H19, miR-29b and FOXO4. 

METHODS
The establishment of DM rat model
Sprague-Dawley (SD) rats (age: 4-6 weeks, sex: male) 
purchased from Shanghai Bioray Laboratories were 
randomly divided into two groups: the control group 
(n=6) and the DM group (n=6). All rats were raised 
in the uniform conditions with adequate water and 
food. After acclimatization for one week, the rats in 
DM group were intraperitoneally injected with strep-
tozotocin (STZ, 60 mg/kg in 0.1 mol/l citrate buffer) 
to induce DM and the rats in the control group were 
injected with 0.1 mol/l citrate buffer. The concentra-
tion of blood glucose detected 72 h after the injection 
more than 16.7 mM was regarded as that DM model 
was established successfully. Rat retinal tissues were 
collected immediately following rats were killed after 
72 h of injection. All experiments in this study obtained 
the permission of the Animal Care and Use Committee 

of the Affiliated Hospital of inner Mongolia University 
for the Nationalities.

Cell culture and treatment
Rat retinal Müller cells (rMC-1) were obtained from 
EK-Bioscience (Biotechnology Co., Ltd. Shanghai En-
zyme Research) and seeded in the 24-well plates and 
cultured in RPMI 1640 medium containing 10% FBS 
with 5% CO2 at 37°C. To induce the DM Müller cell 
model, normal glucose (5.5 mM) or high glucose (HG, 
25mM) was used to stimulate rMC-1 cells for 24, 48, 72 
and 96 h. In the following experiment, rMC-1 cells were 
seeded in a 96-well plate and maintained for 24 h. Af-
ter pcDNA-H19/pcDNA was transfected into the rMC-1 
cells with Lipofectamine 2000 reagent (Invitrogen), the 
cells were treated with normal glucose (5.5 mM) for 72 
h.
In the following experiment, rMC-1 cells were seed in a 
96-well plate and maintained for 24 h. After si-ctrl/si-
H19 (si-control/si-H19), miR-29b inhibitor/NC and/or 
si-FOXO4 were transfected into the rMC-1 cells with Li-
pofectamine 2000 reagent (Invitrogen), the cells were 
treated with HG for 72 h. All transfected genes were 
synthesized by Shanghai Yingjun Co., Ltd. (China).

Assessment of the expression of miR-29b, H19 
and FOXO4
The levels of miR-29b, H19 and the mRNA level of 
FOXO4 were detected by qRT-PCR. Total RNAs of retinal 
tissues and rMC-1 cells were isolated by TRIzol reagent 
(Invitrogen) following its manufacturer’s instructions. 
Complementary DNA (cDNA) was synthesized by 
the reverse transcription of RNA with commercially 
available kit (iScriptTM). qRT-PCR was performed us-
ing SYBR® Premix DimerEraser kit (TaKaRa) on the 
instrument ABI 7000 PCR (Applied Biosystems, Japan). 
GAPDH acted as the control gene for H19 and FOXO4, 

Figure 1. The expression profile of RNAs in retina tissues of DM rat. (A) The expression of miR-29b in retina tissues was investigated 
by qRT-PCR. (B) The expression of lncRNA-H19 in retina tissues was determined using qRT-PCR. (C) The expression of FOXO4 in retina 
tissues was detected at both the mRNA and protein levels. *P<0.01 vs. control.
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β-actin was used as the control gene for miR-29b. 2-ΔΔCT 

method was performed to qualify the relative amount 
of mRNAs.
The expression of FOXO4 at protein level was assessed 
by Western blot assay. The proteins extracted by RIPA 
lysis buffer and centrifugation were separated with 
an SDS/PAGE (12% gel) and then transferred into the 
membrane which then was incubated with antibodies 
against FOXO4 (Sigma) and β-actin as internal control 
at 4°C for 24 h, followed by maintained with the sec-
ondary antibodies for another 2 h. SuperSignal West 
Pico chemiluminescence kit (Thermo Scientific) was 
used to visualize the protein bands.

The apoptosis of cell
The apoptosis of rMC-1 cells were determined by 
FITC-Annexin V Apoptosis Detection Kit (Biosciences, 
USA) in accordance with previous report [26]. Briefly, 
rMC-1 cells with different treatments were cultured 
with 5% CO2 at 37°C for 48 h in a 96-well plate. The 
cells were collected and stained by PI (Sigma) for 30 

min, followed by that the level of apoptosis was detect-
ed by FITC-Annexin V Apoptosis Detection Kit ground 
on the double staining with FITC-Annexin V and PI. The 
apoptotic rMC-1 cell was analyzed with a flow cytome-
try (FCM; FACScan).

RNA immunoprecipitation (RIP) assay
RNA-induced silencing complex (RISC) with an essen-
tial component that is Ago2 plays an important role in 
miRNAs putting to use their functions for gene silenc-
ing [27,28]. We hypothesized that H19 and miR-29b might 
be in the same RNA-induced silencing complex. RIP 
assay was performed following previous report [29] by 
Magna RIP RNA-Binding Protein Immunoprecipitation 
Kit (Millipore, Billerica, MA, USA). Briefly, rMC-1 cells 
were lysed and then maintained with RIP buffer sup-
plemented with magnetic beads conjugated with hu-
man anti-Ago2 antibody (Abcam, Cambridge, MA, USA) 
and normal mouse IgG (negative control; Millipore). 
Ago2 in RNA-binding complex or total RNA (input con-
trol) was detected using IP-western. The H19 and miR-
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Figure 2. High glucose induced the dysregulation of miR-29b, H19 and FOXO4 and apoptosis in rat retinal Müller cells. (A) The 
expression of miR-29b in Müller cells was determined using qRT-PCR. (B) The expression of H19 in Müller cells was determined using 
qRT-PCR. (C) The expression of FOXO4 in rat Müller cells was detected at both the mRNA and protein levels. (D) The apoptosis of rMC-
1 cells was assessed using FCM assay. *P<0.01 vs. control.
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The levels of miR-29b, H19 and FOXO4 
were expressed aberrantly in diabetic ret-
inopathy (DR) tissues.
SD rats were intraperitoneally injected with streptozo-
tocin to establish the rat DM model. After the success-
ful DM model, the retina tissues were harvested to de-
termine the expressions of miR-29b, H19 and FOXO4. 
Compared with the control rats, the level of miR-29b 
was markedly decreased (Figure 1A), the expression 
level of H19 was significantly enhanced (Figure 1B), 
and the expression of FOXO4 was obviously elevated at 
mRNA and protein levels (Figure 1C) in DM rats.

High glucose induced the dysregulation of 
miR-29b, H19 and FOXO4 and apoptosis in 
rat retinal Müller cells. 
The Müller cells of rat were treated with high glucose 
(25 mM) for different times (24 h, 48 h, 72 h and 96 
h). The expression of miR-29b was gradually reduced 
as time goes by, and reached a lowest level at 72 h in 
HG-treated Müller cells (Figure 2A). On the contrary, 
the expressions of H19 and FOXO4 were gradually 
increased over time, and reached their maximum lev-
els at 72 h (Figure 2B&C). Moreover, the apoptosis of 
Müller cells was gradually elevated with the time pro-
longation of HG treatment (Figure 2D).

Over-expression of H19 promoted the 
apoptosis of rMC-1 cells.
The rMC-1 cells were transfected with pcDNA-H19 
and cultured with 5.5 mM glucose. The expression of 
H19 in rMC-1 cells transfected by pcDNA-H19 in was 
remarkably higher than that in rMC-1 cells without 

29b of co-precipitated RNAs were examined by qRT-
PCR following the antibody were recovered by protein 
A/G beads.

RNA pull-down
To explore physical relation between H19 and Ago2, 
RNA pull-down assay were performed via H19 labeled 
with biotin as a probe to assess Ago2 from the com-
plex via western blot and miR-29b by qRT-PCR. As 
the positive control, lncRNA-loc285194 (LOC) [30] was 
also cloned and then the resultant plasmid DNA was 
linearized by restriction enzyme NotI. Biotin-labeled 
RNAs were reversely transcribed by using Biotin RNA 
Labeling Mix (Roche Diagnostics) and T7 RNA poly-
merase (Roche, Basel, Switzerland), followed by treat-
ed with RNase-free DNase I (Roche, USA) and purified 
with the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) 
and were further used for co-precipitating RNA. Ago2 
was assessed by western blot. The level of miR-29b in 
co-precipitated RNAs was determined using qRT-PCR 
[31].

Statistical analysis
All data were harvested and statistically analyzed by 
Graph Pad Prism software (Graph Pad Software, La 
Jolla, USA) and show as mean±standard deviation (SD) 
with at least three repeats. Student’s t test was used 
to assess the difference of two groups, and one-way 
ANOVA was used to assess the difference of multiple 
groups. P<0.01 was considered as statistically signifi-
cant.

RESULTS

Figure 3. Up-regulation of H19 promoted the apoptosis of rMC-1 cells. (A) H19 was over-expressed in rMC-1 cells. (B) The apoptosis 
of Müller cells were assessed by FCM assay. *P<0.01 vs. pcDNA-H19.
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the transfection of pcDNA-H19 (Figure 3A). The apop-
tosis of rat Müller cells was greatly enhanced with the 
over-expression of H19 in rMC-1 cells (Figure 3B).

MiR-26b could target bind with H19.
In accordance with bioinformatics database, miR-29b 
was predicted to have a binding site with H19 (Figure 
4A). To further investigate the relationship between 
H19 and miR-29b, the RIP and pull down assays were 
performed. The result of RIP assay indicated that Ago2 
protein in the rMC-1 cell lysates was precipitated by 
anti-Ago2 in IP-western, and the levels of H19 and miR-
29b in Ago2 precipitation were significantly higher 
than that in the control (Figure 4B). As shown in Figure 
4C, Ago2 were examined in H19 pulled down complex 
using western blot assays, and miR-29b was found to 
be enriched more significantly in the same pellet than 
that in LOC pull-down complex, revealing that H19 is a 
positive miR-29b-targeting lncRNA.

H19 mediated HG-induced apoptosis of 
Müller cells via miR-29b regulating FOXO4. 
As shown in Figure 5&6, HG could obviously enhance 
the expression of FOXO4 at both mRNA and protein 

levels in rMC-1 cells, as well as the apoptosis of Müller 
cells. After rMC-1 cells were transfected by si-H19 
and then treated with HG, HG-induced effects on the 
enhancement of FOXO4 expression and cell apoptosis 
were reversed by silence of H19. Furthermore, rMC-1 
cells were transfected by si-H19 and miR-29b inhibitor 
and then treated with HG could abrogate the effect of 
H19 knockdown on FOXO4 expression and Müller cell 
apoptosis. Meanwhile, down-regulation of FOXO4 in 
rMC-1 cells transfected by si-H19 and miR-29b inhib-
itor also could alleviate the effect of miR-29b knock-
down on the apoptosis of Müller cell.

DISCUSSION
Diabetic retinopathy is the injury of vessel and neu-
rology in the retina resulted from metabolic disorders 
in DM [25]. The pathological development of DR is an 
intricate process with multiple steps, and implicates a 
battery of dysregulated genes and regulators includ-
ing lncRNAs and miRNAs. Similarly in our study, the 
expression of H19, miR-29b and FOXO4 were dysregu-
lated in the retina tissues of DM rats. It presents clear 
that HG levels caused by metabolic disorders of diabe-
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Figure 4. H19 could target to with miR-29b. (A) Predicted binding sites between H19 and miR-29b. (B) Cellular lysates of Müller cells 
were used for RIP assay with Ago2 antibody. The level of Ago2 was detected using IP-western (up panel). H19 and miR-29b levels 
were detected using qRT-PCR (down panel). *P<0.01 vs. IgG. (C) Verification of H19 and miR-29b in the same RISC complex by RNA 
pull down assay. Pull-down of Ago2 was determined by western blot assay (up panel). MiR-29b in the RNA pulled down samples was 
detected using qRT-PCR (down panel). *P<0.01 vs. beads; *P<0.01 vs. LOC.
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tes are the direct cause of neural cell injury in retinal 
tissues [32]. In our study, HG stimulated the apoptosis of 
rat retinal Müller cells, as well as induced the aberrant 
expression of expression of H19, miR-29b and FOXO4. 
Hence, we inferred that the levels of H19, miR-29b and 
FOXO4 might be correlated with the apoptosis of rat 
retinal Müller cells. 
To further investigate the mechanism of DR involving 
these genes, we concluded from recent reports that 

H19 plays important roles in the apoptosis of various 
cells, such as cardiomyocytes [33], gastric cancer cells 
[34], osteoblastic cell [35], and hippocampal neuron of DM 
rat [17]. In our study, we also found that over-expression 
of H19 induced the apoptosis of rat retinal Müller cells 
and knockdown of H19 reversed HG stimulation on cell 
apoptosis and FOXO4 up-regulation, which means that 
HG stimulated the apoptosis of rat retinal Müller cells 
with H19 up-regulation. On the other hand, miR-29b 
is another dysregulated regulator involved in diabetes. 
In DM rats, the level of miR-29b was increased by dia-
betes, but acute contractile stimulus reduced miR-29b 
level in muscle from diabetic rats [36]. Moreover, miR-
29b presented the protective effect on dorsal root gan-
glia neurons of diabetic rat [22]. In our precious study, 
miR-29b acted as a biomarker was regulated by MIAT 
and further modulated rat retinal Müller cell apopto-
sis in DR [37]. In present study, RIP assay and RNA pull-
down assay indicated that H19 was a target of miR-29b 
and inhibition of miR-29b reversed H19 down-regu-
lation effect on cell apoptosis and FOXO4 expression, 
which indicated that H19 mediated rat retinal Müller 
cell apoptosis and FOXO4 expression via target regulat-
ing miR-29b.
FOXO4 is a number of forkhead box proteins of O class 
proteins (FOXOs) family that were known to act as the 
transcription factors to drive multifarious physiological 
processes in cells, including proliferation, DNA damage, 
differentiation and apoptosis [38,39]. In addition, FOXO4 
was reported to be the major pathogenic factor to me-
diate endothelial damage under hyperglycemia [40,41]. 
Our study revealed that down-regulation of FOXO4 
suppressed cell apoptosis in rMC-1 cells, which was 
consistent with others reports [42]. Moreover, down-reg-

Figure 5. H19 regulated FOXO4 expression via miR-29b. Müller cell lines were transfected with si-Ctrl/si-H19 or si-H19+NC/si-
H19+miR-29b inhibitor, followed by treated by HG. The expression of FOXO4 in rMC-1 cells was detected both at the mRNA and 
protein levels. *P<0.01 vs. control; *P<0.01 vs. si-Ctrl; *P<0.01 vs. si-H19+NC.

Figure 6. H19 participated in rMC-1 cells apoptosis through 
miR-29b regulating FOXO4. Müller cell lines were transfected 
with si-Ctrl/si-H19, si-H19+NC/si-H19+miR-29binhibitor, 
or si-H19+miR-29b inhibitor+si-Ctrl/si-H19+miR-29b 
inhibitor+si-FOXO4, followed by treated by HG. The apoptosis 
of rMC-1 cells were determined by FCM assay. *P<0.01 vs. 
control; *P<0.01 vs. si-Ctrl; *P<0.01 vs. si-H19+NC; *P<0.01 vs. 
si-H19+miR-29b inhibitor+si-Ctrl.
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ulation of FOXO4 reversed the effect of miR-29b knock-
down on cell apoptosis, indicating that the relationship 
between miR-29b and rat retinal Müller cell apoptosis 
depended on FOXO4.
In summary, miR-29b targeting lncRNA-H19 mediates 
the apoptosis of rat retinal Müller cells via regulating 
FOXO4 in diabetic retinopathy. 
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