background image

Clinical Application and Efficacy Analysis of 3D Navigation Module 

in the Treatment of Atlantoaxial Instability

Research article

Clin Surg Res Commun 2018; 2(4):  

1-11 

DOI: 10.31491

/

CSRC.2018.12.023

Yong-xiong He

 

et al   

1

Bo-kang Lv

a

, Yong-xiong He

a

*

Abstract

Background:

 Posterior cervical atlantoaxial pedicle screw fixation is a very effective treatment for atlantoaxial 

instability (AAI). However, due to the complex anatomy of the cranial-cervical junction, the accuracy and safety 

of posterior atlantoaxial pedicle screw placement remains extremely challenging.

Objective:

 To quantitatively evaluate the safety and accuracy of the 3D navigation module to assist the 

posterior atlantoaxial fixation.

Methods:

 A total of 20 AAI patients were selected between June 2014 and September 2015. The Mimics v10.1 

and 3-matic software were used. The 3D navigation module was designed as a double-sided positioning hole 

guide with a guide rod. All patients underwent posterior atlantoaxial posterior pedicle screw fixation with 

3D navigation module. The actual entry point and screw trajectory were measured after operation, which 

were compared with the ideal entry point and screw trajectory. The Japanese Orthopaedic Association (JOA) 

score was measured before and after surgery to evaluate the neurological function improvement. The average 

operation time, blood loss, and frequency of intraoperative fluoroscopy were counted.

Results: 

The posterior atlantoaxial pedicle screw fixation with a 3D navigation module was successfully 

performed in all patients. A total of 80 atlantoaxial pedicle screws were implanted in the 20 patients. 

Postoperative CT scan showed that two pedicle screws deviated from the medial aspect of the atlas pedicle 

cortex and entered the spinal canal approximately 1 mm, without causing neurological complications. There 

was no significant difference between the ideal and actual entry points or ideal and actual screw trajectories 

of the atlas and axis (P > 0.05). The preoperative JOA score was 12.45 ± 1.15 and postoperative JOA score was 

15.5 ± 0.89, with statistically significant difference (P < 0.05).

Conclusion: 

It was safe and effective to use the 3D navigation module to assist the posterior atlantoaxial 

pedicle insertion, with a high accuracy of pedicle screw placement.

Keywords:

 atlantoaxial instability; pedicle screw; 3D navigation module; rapid prototyping

*Corresponding author: Yong-xiong He

Mailing address: Department of Spine Surgery, Inner Mongolia 

People’s Hospital, Saihan District Zhao wuda road No.42, 

Hohhot 010017, Inner Mongolia, China.

E-mail: spinedoctor@sina.com

Tel: +86-0471-2243347

Received: 15 November 2018  Accepted: 15 December 2018

screw fixed the three columns (anterior, median, and 

posterior) of the vertebral body and thus provided a 

good three-dimensional fixed pattern, it has obvious 

advantages compared with other fixed methods by 

biomechanics 

[5]

. However, as the cervical vertebra has 

a complex anatomical structure and an important adja-

cent relationship, and the pedicle is relatively slender 

with great angle change, the most common and most 

serious surgical complications are C2 nerve root and 

vertebral artery injures that are caused by the pedicle 

screw trajectories deviating from the pedicle cortex 

[6]

which makes the clinical application of posterior cervi-

cal pedicle screw fixation extremely limited. Therefore, 

how to improve the accuracy of screw placement and 

reduce surgical complications is an important problem 

that needs to be solved urgently in clinical work. 

The cervical pedicle screw fixation methods currently 

used in the clinic include bare-handed screw-setting 

[7]

, screw-setting assisted by the imaging techniques, 

INTRODUCTION

In recent years, patients with atlantoaxial instabili-

ty (AAI) have been routinely treated with posterior 

atlantoaxial pedicle screw fixation 

[1-3]

. The cervical 

spondylosis requiring internal fixation was generally 

caused by multiple injuries and such injuries were 

often combined with fracture dislocation, leading to 

the destruction of its three-column structure. In 1994, 

Abumi, et al. 

[4]  

successfully applied and promoted 

the posterior cervical pedicle screw fixation in the 

treatment of lower cervical injury. Because the pedicle 

a

Department of Spine Surgery, Inner Mongolia People’s Hospital, Hohhot 010017, Inner Mongolia, China.

test-html.html
background image

Published online: 25 December 2018

ANT PUBLISHING CORPORATION

Yong-xiong He et al   

2

computer-assisted orthopaedics surgery (CAOS) 

[8]

, and 

3D printing technology that was also called comput-

er-aided design-rapid prototyping (CAD-RP technolo-

gy). The key points of the bare-handed screw-setting 

are the accuracy of the point and direction of the screw, 

rich experience, and intraoperative fluoroscopy. The 

screw-setting assisted by the imaging techniques has 

high requirements for doctors' knowledge accumu-

lation, experience judgment, and spatial imagination, 

causing certain subjectivity and lacking objective mea-

surement standards. CAOS makes intraoperative sur-

gery more precise, safe and effective, but its expensive 

equipment costs and operational complexity limit its 

promotion and application 

[9-11]

. The CAD-RP technique 

was first applied to lumbar pedicle screw placement 

by Radermacher 

et al. 

[12]

. It is a kind of modern digital 

orthopedic technology. Its principle is to scan the struc-

ture of tissue and organ through CT, generate a propor-

tional 3D module corresponding to the real object, and 

make a solid model proportional to the patient through 

the 3D printer; through the solid model, the surgical 

simulation and intraoperative reference and appli-

cation are performed 

[10]

. The rapid prototyping drill 

guide template designed by 3D printing technology can 

help improve the accuracy of the screw placement 

[13-16]

.

In this prospective clinical study, we designed a drill 

guide template for atlantoaxial pedicle screw place-

ment. The purpose of this study was to quantitatively 

evaluate the accuracy of placement of atlantoaxial ped-

icle screws using a drill guide template. 

MATERIALS AND METHODS

Subjects

All patients signed written informed consent. In ad-

dition, this study followed the principles outlined in 

the Helsinki Declaration. Patients with atlantoaxial 

instability (AAI) who were hospitalized and surgically 

treated in our hospital from June 2014 to September 

2015 were enrolled in this prospective study. A total 

of 20 patients who underwent AAI posterior approach 

(17 Male and 3 female), with an average age of 42.6 

years (age range 22-46 years), were selected based on 

the inclusion and exclusion criteria. All AAI patients 

underwent posterior atlantoaxial pedicle screw fixa

-

tion with a drill guide template. All protocols have been 

approved by the Committee of Inner Mongolia People’s 

Hospital.

Diagnostic criteria:

 All patients were diagnosed with 

AAI by clinical and imaging examinations and had clini-

cal symptoms.

Inclusion criteria:

 patients who meet the diagnostic 

criteria; patients who can be placed with the atlantoax-

ial pedicle screw by X-ray, computed tomography (CT), 

and magnetic resonance imaging (MRI) examinations; 

patients whose surgeries were performed by the same 

senior physician.

Exclusion criteria:

 patients with severe vertebral injury, 

malformation, small posterior arch, etc.; patients with 

advanced age, combined with serious medical diseases 

and osteoporosis, unable to tolerate surgery; patients 

with infection, tuberculosis, tumor, and other complica-

Figure 1. A. The atlantoaxial and drilling guides produced by Mimics software. B. Atlantoaxial models and drilling guides 
generated using rapid prototyping techniques. C. 3D module disinfection backup and 3D module placed on the spinous 

process of the axon. D. The accurate internal fixation showed by postoperative X-ray.

test-html.html
background image

Yong-xiong He et al   

3

Clin Surg Res Commun 2018; 2(4):  

1-11

tions; patients who had a mental illness.

Construction of 3D navigation module

Software Platform

Mimics (Materialise's interactive medical image con-

trol system), known as "Dream Factory of Medical 

Imaging", is a medical image control system developed 

by Materialise of Belgium to realize interoperability. 

Through this software, various medical imaging mate-

rials such as CT, MRI, and other two-dimensional data 

are imported, and then the image data are analyzed 

by the clinician on three different orthogonal planes: 

cross-section, coronal plane, and sagittal plane. The 

valuable areas are optimized to get the desired data, 

and then the 3D data model is rebuilt. Through the sur-

gical simulation operation, virtual surgical operations 

can be performed in the software, such as pre-surgical 

program and prosthesis placement. Mimics can per-

form 3D reconstruction of imaging data, providing sup-

port for a variety of supporting software applications 

such as virtual reality (VR), computer-aided design 

(CAD), finite element analysis (FEA), and rapid proto

-

typing (RP). Therefore, Mimics can be used for clinical 

diagnosis, surgical simulation (pre-surgical program, 

virtual surgery operation, prediction and analysis 

of surgical risk), and can also be applied to anatomy 

teaching and scientific research. It has great potential 

for functional development 

[17]

.

3-matic is a forward engineering based on Digital 

Standard Triangle Language (STL) produced by Ma-

terialise. It can directly edit and modify STL format 

files to implement FEA/CFD processing in various STL 

formats. All operations of 3-matic are based on digital 

form (triangle based) for stretching, rotation, array-

ing, etc. It can directly copy and paste the anatomical 

data in Mimics software, and can input them into any 

CAD document. Through 3-matic, we can implement 

3D measurement and engineering analysis, design 

implants and surgical guidelines for specific patient 

surgeries, and prepare anatomical data or implants for 

finite element simulations. This study used 3-matic to 

create a personalized navigation template for atlanto-

axial pedicles, which greatly reduced the time required 

to create navigation templates using traditional reverse 

engineering 

[17]

.

Atlantoaxial pedicle screw simulation placement

All patients underwent cervical CT with a tomographic 

thickness of 0.625 mm. CT images were imported into 

Mimics software and the atlantoscopic 3D model was 

constructed. In the virtual environment of the Mimics 

software, a cylinder (3.5 mm in diameter) was created 

as an atlantoaxial pedicle screw, which is because it is 

easier to make and adjust the position of the cylinder 

in the software. The ideal trajectory of the atlantoaxial 

pedicle screw was created and adjusted by directly ob-

serving the relationship between the cylinder and the 

pedicle cortical bone in different planes.

Production of atlantoaxial 3D guide module

Then the 3D model of the atlantoaxial vertebral body 

and the cylinder was introduced into the 3-matic (Ma-

terialise) software to design a 3D drilling guide module 

with drilling guidance. In the 3-matic software, the sur-

face of the template (2.5-mm thickness) was created as 

DOI: 10.31491

/

CSRC.2018.12.023

Figure 2. A. Postoperative images of C1. B. Preoperative images of C1. C. Superimposition of preoperative and postoperative 

images of C1. D, E: Adjusted C1 coordinate axis. F. Adjusted C2 coordinate axis.

test-html.html
background image

ANT PUBLISHING CORPORATION

Published online: 25 December 2018

Yong-xiong He et al   

4

the Mayfield head frame. The median incision of the 

posterior neck was taken and separated layer by layer 

to fully reveal the posterior structure of the atlanto-

axial vertebrae, including the posterior tibial tuber-

osity and posterior arch, lamina, and lateral vertebral 

blocks. The soft tissue covering the bony structure was 

completely peeled off by subperiosteal peeling to make 

the drill guide template to be fully compatible with the 

posterior surface of the vertebra. The drill guide was 

fixed and the guide hole was drilled through the tem

-

plate positioning hole, followed by the drilling of the 

trajectory parallel to the guide rod of the template. The 

probe was used to detect the four walls of the nailing 

channel were leaking. The intraoperative fluoroscopy 

was used to confirm that the drilled trajectory was 

ideal. If the actual trajectory deviated from the ideal 

trajectory due to the poor fit between the template 

and the posterior atlantoaxial surface, the direction 

of the drill was adjusted according to the template. 

After achieving the ideal spiral path, a 3.5-mm screw 

was inserted. The pre-bent rods were then secured 

to the sides of the atlantoaxial pedicle screws (Fig. 1). 

Decompression of the occipital foramen was then per-
formed if necessary.

Postoperative treatment

 

The patient’s vital signs were closely observed. Post-

operative routine hormones were given to prevent 

spinal cord inflammation and edema; antibiotics were 

given to prevent infection; meeobalamin was used for 

nourishing nerves. The drainage tube was routinely 

removed within 48 hours. The patient was routinely 

bedridden 3-5 d, with the axis turned over; after 3-5d, 

the opposite side of the posterior atlantoaxial surface, 

thus providing a perfect fit between the template and 

the posterior atlantoaxial surface. Using a Boolean 

subtraction operation, two position holes (3.5-mm 

diameter) were created on both sides of the template 

surface based on the data of the cylinder. After the 

cylinder was interactively translated, two guide holes 

(3.5-mm diameter) were created on the optimum en-

try points on either side of the template surface. The 

direction of the drill guide hole was exactly the same 

as the optimum nailing direction. The local Boolean 

operation was used to combine the drill guide hole 

and the template surface with the positioning hole 

into one unit .

Physical molding of 3D guides

 

The DICOM format of the cervical CT of the patient 

was introduced into the Mimics software, and the at-

las template of interest was obtained by operation of 

thresholding, region growing, crop mask, editing mask, 

etc. Then the atlas template selected, followed by the 

click of the “Calculate 3D” button to complete the 3D 

reconstruction of the atlas. The 3D model of the atlas 

was displayed in the 3D viewport and was smoothed, 

reduced by triangle reduction, etc. The final 3D model 

of the atlas was obtained, and then imported into a 3D 

printer to print out the patient’s atlantoaxial model 

using a photosensitive resin material.

Surgical procedures

 

All operations were performed by the same senior 

surgeon. The patient was placed in the prone position 

under general anesthesia and the head was fixed by 

Figure 3. A. Cross-sectional angle of the actual screw trajectory of C1. B. Sagittal angle of the actual screw trajectory of C1. C. 
Entry point of the actual screw trajectory of C1. D. Transverse angle of the ideal screw trajectory of C1. E. Sagittal angle of the 

test-html.html
background image

Yong-xiong He et al   

5

Clin Surg Res Commun 2018; 2(4):  

1-11

patients would go to the ground. The neck brace was 

worn for 3 months after operation, followed by the 

X-ray examination of the cervical spine. According to 

the results of the review, the neck brace was removed.

Evaluation of outcomes

Evaluation of screw trajectories

The accuracy of the atlantoaxial pedicle screw was 

analyzed by a physician who did not participate in sur-

gical stapling. All patients had cervical CT scans after 

surgery. Preoperative and postoperative CT images 

were imported into Mimics software. The preopera-

tive atlantoaxial 3D model and cylinder as well as the 

postoperative atlantoaxial 3D model and screw were 

reconstructed. The "global registration" operation was 

used to superimpose the preoperative 3D model with 

the cylinder and the postoperative 3D model with the 

screw. This overlay facilitated the comparison of the 

cross-sectional angle and sagittal angle between the 

ideal screw trajectory with the actual screw trajectory 

(Fig. 2 and 3). Besides, the patient was routinely ex-

amined by CT after surgery, and the picture archiving 

and communication system (PACS) measurement tool 

was used to display the relative positional relationship 

between the screw and the pedicle according to the 

CT slice. Screw-setting accuracy was evaluated by the 

methods provided by Yoshiharu 

et al

[18]

, Miyamoto 

et al

[19]

, and Yasutsugu 

et a

l. 

[20]

. Grade 0: The screw 

is completely placed inside the pedicle; Grade I: the 

screw penetrates the pedicle bone cortex ≤ 2 mm, 

without neurological or vertebral artery injury and 

other complications associated with screw placement; 

Grade II: screw penetrates the pedicle bone cortex> 

2mm, without neurological or vertebral artery injury 

and other complications related to nailing; Grade III: 

neurological or vertebral artery injury and other com-

plications related to screw placement occur.

Evaluation of the entry points

In order to properly compare the ideal and actual 

coordinates of the entry point, the axis of the atlanto-

axial axis was adjusted. For C1, the front nodule was 

treated as the origin of the coordinate axis. The x-axis 

passed through the origin of the coronal plane and 

was parallel to the line connecting the lowest points of 

the lower articular processes on both sides. The y-axis 

and the z-axis passed through the origin and were per-

pendicular to the x-axis of the horizontal and coronal 

planes, respectively. In the case of the C2 vertebra, the 

midpoint of the line connecting the lowest points of 

DOI: 10.31491

/

CSRC.2018.12.023

Figure 5. Comparison of the angle between the ideal and actual screw trajectory in (A) C1 and (B) C2. ls, lateral section; sp, 
sagittal plane.

Figure 4. Schematic diagram of JOA scores before 

and after surgery. *P < 0.05.

test-html.html
background image

ANT PUBLISHING CORPORATION

Published online: 25 December 2018

Yong-xiong He et al   

6

the articular processes on both sides was regarded as 

the origin. The y-axis and the z-axis passed through the 

origin and were perpendicular to the x-axis of the hori-

zontal and coronal planes, respectively (Fig. 2).

Evaluation of neurological function improvement

The JOA score was used to evaluate the neurological 

function of the patient before and 6 months after sur-

gery. The score was divided into 17 points. The higher 

the score, the better the neurological function.

Statistical analysis

Statistical analysis was performed using SPSS 13.0 

statistical software. Data were expressed as mean ± 

standard deviation. The comparisons were performed 

using paired-sample t-test. P < 0.05 was considered as 

significantly different.

RESULTS

Statistics of postoperative general results

All patients successfully underwent surgery with the 

aid of a drill guide template. Five of the 80 screws were 

placed in a direction that was adjusted during surgery, 

and a satisfactory screw trajectory was achieved after 

adjustment. No complications such as vertebral artery 

injury, cerebrospinal fluid leakage or spinal cord injury 

were found. Three patients developed venous plexus 

hemorrhage. The mean operative time was 174.3 ± 

27.6 minutes and the mean bleeding volume was 312.9 

± 13.5 ml. The mean frequency of intraoperative fluo

-

roscopy was 2.60 ± 0.68.

Comparison of JOA scores before and after 

surgery

 

The scores of the Japanese Orthopaedic Association 

(JOA) were compared between pre-surgery and 6 

months after surgery. The preoperative JOA score was 

12.45 ± 1.15 and postoperative JOA score was 15.5 ± 

0.89, with statistically significant difference (P < 0.05) 

(Fig. 4).

Comparisons between the ideal and actual 

screw trajectories, entry points 

A total of 80 atlantoaxial pedicle screws were placed 

in 20 AAI patients. Postoperative CT scan showed 79 

grade 0 screws and 1 grade I screw. One of the pivot-

al screws deviated inwardly from the pedicle cortex 

and entered the spinal canal approximately 1 mm, 

but no neurological and surgical complications oc-

curred. There was no significant difference in the mean 

cross-sectional angle between the left (P = 0.45), right 

(P = 0.79) ideal screw trajectory and actual screw tra-

jectory of atlas. No significant difference in the mean 

sagittal angle was observed between the left (P = 0.30), 

right (P = 0.10) ideal screw trajectory and the actual 

screw trajectory of atlas (Table 1 and Fig. 5A). Be-

sides, there was no significant difference in the mean 

cross-sectional angle between the left (P = 0.39), right 

(P = 0.11) ideal screw trajectory and actual screw tra-

jectory of axis. No significant difference in the mean 

sagittal angle was observed between the left (P = 0.17), 

right (P = 0.33) ideal screw trajectory and the actual 

screw trajectory of axis (Table 2 and Fig. 5B). As for the 

screw entry point coordinates, there was no significant 

difference between the ideal entry point and the actual 

entry point on both sides of the atlases, axises (P > 0.05) 
(Table 3 and Table 4).

Comparison between bare-handed or naviga-

tion module-assisted screw-setting in previ-

ous study 

[17]

 and navigation module-assisted 

screw-setting in our study

Screw 

trajectory

C1 left (°)

C1 right (°)

Cross-sectional angle

Sagittal angle

Cross-sectional angle

Sagittal angle

Ideal trajectory

7.92 ± 2.37

7.75 ± 0.81

8.59 ± 0.70

8.70 ± 1.05

Actual trajectory

7.82 ± 1.85

8.02 ± 0.55

8.51 ± 0.71

8.36 ± 1.11

P

0.45

0.30

0.79

0.10

Screw 

trajectory

C2 left (°)

C2 right (°)

Cross-sectional angle

Sagittal angle

Cross-sectional angle

Sagittal angle

Ideal trajectory

23.68 ± 3.62

25.59 ± 1.62

22.82 ± 1.46

24.57 ± 1.33

Actual trajectory

24.59 ± 3.86

25.42 ± 1.55

21.93 ± 1.67

25.07 ± 1.86

P

0.39

0.17

0.11

0.33

Table 1 Comparison of the angle between the ideal and actual screw trajectory in C1.

Table 2 Comparison of the angle between the ideal and actual screw trajectory in C2.

test-html.html
background image

Yong-xiong He et al   

7

Clin Surg Res Commun 2018; 2(4):  

1-11

DOI: 10.31491

/

CSRC.2018.12.023

In our study, using navigation module-assisted 

screw-setting, 40 screws were placed in the atlas with 

40 screws of grade 0 (100%) and 40 screws were 

placed in the axis with 39 screws of grade 0 (97.5%) 

and 1 screw of grade I (2.5%). 

In the reference 

[17]

, using bare-handed screw-setting, 

44 screws were placed in the atlas, with 21 screws 

of grade 0 (47.7%), 17 screws of grade I (38.6%), 4 

screws of grade II (9.14%), and 2 screws of grade III 

(4.5%); using navigation module-assisted screw-set-

ting, a total of 38 screws were placed with 35 screws of 

grade 0 (92. 1%) and 3 screws of grade I (7.9%). 

In our study, grade 0 and grade I screws were consid-

ered as satisfactory screws. The satisfaction rate of 

atlantoaxial screw placement in this study was 100% 

(40/40; 40/40). In the reference

 [17]

, the satisfaction 

rate was 86. 3% (38/44) for bare-handed screw-setting 

and was 100% (38/38) for navigation module-assisted 

screw-setting. 

Using the rank sum test analysis, the accuracy of 

screw-setting was significantly improved in our study 

compared with the bare-handed screw-setting group 

of the reference (P < 0.01). Further, there was no sig-

nificant difference in the accuracy of navigation mod

-

ule-assisted screw-setting between our study and the 

reference (P > 0.05)(Tables 5 and 6).

Comparison of postoperative general results 

between the previous study 

[17]

 and our study

 

The average operation time of our study was 174.3 ± 

27.6 min, with the average blood loss of 312.9 ± 13.5ml. 

Referring to the previous literature 

[17]

, for bare-hand-

ed screw-setting and navigation module-assisted 

screw-setting, the average operation time was 175 ± 

41 min and 175 ± 41 min with the average blood loss 

of 407 ± 116 ml and 428 ± 104 ml, respectively. Since 

there was no detailed data in the reference, simple 

comparisons can only be made with mean ± standard 

deviation. The average operation time of this study was 

similar to that of the reference, but the average amount 

of bleeding was slightly reduced (Fig. 6A and B).

Finally, typical cases and special cases were shown in 

supplementary Fig. 1-3.

DISCUSSION

Cervical pedicle screw placement is a difficult point 

in spinal surgery. This is related to the particularity of 

the atlantoaxial anatomy, which also leads to the risk 

of surgery under normal anatomy, and surgery is more 

challenging when fractures and dislocations occur in 

Figure 6. Comparison of the (A) mean blood loss volume and (B) mean operation time between the three groups.

Entry point

C1 left (°)

C1 right (°)

X

Y

Z

X

Y

Z

Ideal point

25.59 ± 1.63

30.70 ± 0.97

0.49 ± 0.73

-15.02 ± 0.74

32.06 ± 1.07

0.01 ± 0.47

Actual point

25.42 ± 1.55

31.36 ± 1.12

0.55 ± 0.15

-15.24 ± 0.80

31.67 ± 1.09

0.23 ± 0.57

P

0.78

0.13

0.19

0.30

0.23

0.18

Table 3 Comparison of the ideal entry point and actual entry point in C1.

x, coronal axis; y, sagittal axis; z, vertical axis.

test-html.html
background image

ANT PUBLISHING CORPORATION

Published online: 25 December 2018

Yong-xiong He et al   

8

this area 

[21]

. Therefore, clinically, atlantoaxial fixation 

is difficult and has a high potential risk, and it has been 

called a surgical "forbidden zone". CAD-RP technology 

can accurately control the patient's anatomy and indi-

vidual differences before surgery, thus improving the 

accuracy of atlantoaxial screw-setting. Jiang 

et al. 

[22] 

used 3D navigation modules to assist the placement 

of 128 atlantoaxial pedicle screws in 32 patients with 

AAI. Postoperative CT showed that the atlas had two 

screws protruding into the spinal canal < 1mm without 

causing related complications. Although the anatomi-

cal structure of the lower cervical vertebra is not more 

specific than the atlantoaxial vertebrae, it is one of the 

difficult factors for screw placement due to individual 

differences and damage 

[23-25]

. In addition, Kaneyamade 

et al. 

[26]

 applied a 3D navigation module to assist the 

placement of 80 screws in the lower cervical spines of 

20 patients; after surgery, all 80 screws were found in 

the pedicle without related complications.

In the present study, the guide template of this study 

also selects the type of single-vertebral double-sided 

drilling guide plate which is currently used more. This 

type of drilling guide plate can select the spinous pro-

cess as a fixed site and has double-sided drilling guide 

plate, which can be well fixed during operation. The 

drill guide has the advantage of drilling direction, and 

intuitively presents the direction of the screw. If neces-

sary, it can help to adjust the direction of the screw. We 

found that a screw of the vertebral pedicle deviated in-

wardly from the pedicle cortex and entered the spinal 

canal approximately 1 mm, but there was no symptom. 

This deviation may be caused by the failure to remove 

the soft tissue during surgery, possibly resulting in 

insufficient fit between the template and the posterior 

vertebral surface. Therefore, the soft tissue on the pos-

terior arch surface of the atlas should be completely 

removed before applying the drill guide template. In 

previous studies, the efficacy of spinal screw place

-

ment was demonstrated in a bilateral guide template. 

In the cadaveric study, Hu et al. 

[27]

 placed 64 C1 pedicle 

screws and 64 C2 pedicle screws without causing a 

screw to penetrate the cortex. However, it should be 

noted that the subject is a cadaver. The factors that may 

affect the results are listed as follows: preoperative and 

postoperative CT scans can be consistent in position; 

during the operation, the exposure and peeling of the 

operation area can be revealed and peeled off as much 

as possible.

Regarding the assessment of screw placement accu-

racy, some studies have simply reported the extent of 

screw insertion into the spinal canal in postoperative 

CT scans 

[28]

. In this study, we also made more accurate 

evaluation criteria in addition to the statistics of the 

degree of screw insertion into the spinal canal. After 

using the 3D navigation module to assist the placement 

of the screw, the CT scan was first performed on the 

postoperative patients. The high-quality rate of the 

screw-setting was evaluated by the method developed 

by Yoshiharu 

et al

[18]

. A total of 80 individual screws 

were placed in the personalized navigation template 

group, of which 79 were grade 0 and 1 was grade I, 

with the screw-setting satisfaction rate was 100%. Al-

though this CT scan-based method helps to make the 

overall evaluation of the screw position, it cannot help 

Groups

No. of screws

Grade 0

Grade I

Grade II

Grade III

Bare-handed screw-setting in 
previous study 

[52]

44

21

17

4

2

Navigation-assisted screw-setting 
in our study

40

40

0

0

0

Z

420

P

< 0.01

Table 5 Comparison of the accuracy between bare-handed screw-setting in previous study 

[52]

 and navigation mod-

ule-assisted screw-setting in our study.

Entry point

C2 left (°)

C2 right (°)

X

Y

Z

X

Y

Z

Ideal point

19.22 ± 0.71

22.70 ± 1.57

-2.28 ± 0.61

-19.38 ± 0.78

-19.38 ± 0.78

-2.02 ± 0.48

Actual point

19.34 ± 1.07

22.35 ± 0.98

-2.40 ± 0.55

-19.28 ± 0.88

-19.28 ± 0.87

-2.22 ± 0.64

P

0.19

0.31

0.55

0.17

0.16

0.33

Table 4 Comparison of the ideal entry point and actual entry point in C2.

x, coronal axis; y, sagittal axis; z, vertical axis.

test-html.html
background image

Yong-xiong He et al   

9

Clin Surg Res Commun 2018; 2(4):  

1-11

DOI: 10.31491

/

CSRC.2018.12.023

to effectively compare the ideal and actual trajectories 

of the screw. Hu 

et al. 

[27]

 analyzed the positional devi-

ation of C2 laminar screws from the ideal and actual 

entry points as well as trajectory directions. Hu et al. 

superimposed the preoperative and postoperative at-

lantoaxial models in Mimics software and compared 

the ideal and actual screw trajectories. This is a more 

efficient way to compare the ideal and actual screw 

trajectories. In this study we also used this method to 

compare the ideal and actual screw trajectories. The 

results showed that the application of the drill guide 

module to assist the placement of the pedicle screw 

was extremely accurate, and there was no statistical 

difference between the two screw trajectories. The 

evaluation of the two screw trajectories can not only 

overall reflects the satisfaction rate of screw-setting, 

but also analyzes the ideal and actual screw trajectory 

angles in different planes, making the evaluation of 

screw-setting accuracy more perfect.

The 

average operation time in this study was similar 

to that in 

the previous study 

[17]

. However, the 

average 

blood loss of this study was significantly lower than 

that in the reference 

[17]

, possibly due to the 

following 

points. First, there were differences in the number of 

experimental subjects: 20 subjects in this study, 22 

cases in the 

bare-handed screw-setting 

group of the 

reference, and 19 cases in the 

navigation module-

assisted screw-setting

 group of the reference. Second, 

the differences in the intraoperative situation and 

the patient's own situation. The age of patients in our 

study was significantly different from the overall age 

of the reference. The maximum age of the experiment 

was 46 years, and the maximum age of the reference 

was 64 years. Finally, intraoperative application of 

devices and personal operating habits may also be the 

cause. Besides, we found that the amount of bleeding 

in the 

navigation module-assisted screw-setting

 group 

was higher than that in the 

bare-handed screw-setting 

group 

[17]

, possibly resulting from the pursuit of the 

fitting degree of the guide to increase the extent of 

the vision field and soft tissue peeling during the use 

of guide templates. We believe that when using 3D 

navigation templates, we should combine the actual 

situation in the operation, and reduce the degree of 

peeling as much as possible without affecting the 

accuracy of screw placement.

During the operation of this study, it was found that 

the texture of the material used in the navigation 

template, a photosensitive resin material, was rela-

tively soft and slight deformation occurred during 

use, which may be one of the causes of errors in this 

experiment. Owing to the diversity of materials of 3D 

printing technology, metal materials would be used 

to make navigation templates in the subsequent sur-

geries, which may eliminate related problems in this 

study. Besides, considering that the operating rooms of 

most lower-level hospitals may not be equipped with 

plasma disinfection equipment, the upgraded mate-

rials can also be used in the operating room without 

plasma disinfection equipment, which is conducive to 

clinical promotion. Further, in the early stage of the 

surgery, the surgeon with relatively lack of experience 

was selected for operation, resulting in a decrease in 

the satisfaction rate of the screw-setting. The postop-

erative X-ray film clearly showed the screw offset, but 

no neurological complications. Therefore, we believe 

that 3D navigation template-assisted screw-setting can 

greatly improve the accuracy of screw placement, but it 

is not omnipotent. This method still requires the oper-

ation of a physician with certain experience, and there 

is also a certain requirement for the understanding and 

proficiency of the use of the guide in case of emergen

-

cy. However, the guide template is still positive for the 

guidance of young physicians, which can greatly reduce 

the learning curve and improve the accuracy of screw 

placement.

After this stage of surgery accumulation, we have two 

thoughts on the 3D navigation module. First of all, most 

of the currently used navigation module materials are 

photosensitive resin materials. In this study, the prob-

lems caused by the disinfection and use of materials 

have highlighted the limitation of the 3D navigation 

module itself. We consider further optimized materials 

as metal 3D navigation modules. Secondly, we encoun-

Groups

No. of screws

Grade 0

Grade I

Grade II

Grade III

Navigation-assisted screw-setting 
in previous study 

[17]

35

3

0

0

0

Navigation-assisted screw-setting 
in our study

40

0

0

0

0

Z

700

P

0.072

Table 6 Comparison of the accuracy of navigation module-assisted screw-setting between the previous study 

[17]

 and 

our study.

test-html.html
background image

ANT PUBLISHING CORPORATION

Published online: 25 December 2018

Yong-xiong He et al   

10

tered a deviation in the use of navigation templates due 

to poor chimerism, affecting the accuracy and safety of 

the screw placement. We believe that if the guide rod of 

the external screw-setting angle can be added during 

the production of the navigation template, the accura-

cy and safety of the screw-setting may be further im-

proved. When a similar problem is encountered, even if 

the navigation template is not well fitted, the guide rod 

can still guide the screw placement.

In conclusion, the use of 3D navigation module is safe 

and effective for atlantoaxial pedicle screw implanta-

tion, which can significantly improve the accuracy of 

screw placement and prevent surgical complications. 

Therefore, the 3D navigation module-assisted posterior 

atlantoaxial fixation is worthy of clinical application.

 

REFERENCES

1.  Mingsheng, T., Huimin, W., Yunting, W., Guangbo, Z., Ping, 

Y., Zirong, L., Hongyu, W., and Feng, Y. (2003) Morpho-

metric evaluation of screw fixation in atlas via posterior 

arch and lateral mass. Spine 28, 888-895

2.  Lee, M. J., Cassinelli, E., and Riew, K. D. (2006) The feasi-

bility of inserting atlas lateral mass screws via the poste-
rior arch. Spine (Phila Pa 1976) 31, 2798-2801

3. 

Jin, S. Y., Kafle, D., Nguyen, N. Q., Noh, W., Park, K. W., 

Chang, B. S., Lee, C. K., and Riew, K. D. (2012) Routine 
insertion of the lateral mass screw via the posterior arch 

for C1 fixation: feasibility and related complications. 

Spine Journal 12, 476-483

4.  Abumi, K., ., Itoh, H., ., Taneichi, H., ., and Kaneda, K., . 

(1994) Transpedicular screw fixation for traumatic le

-

sions of the middle and lower cervical spine: description 
of the techniques and preliminary report. J Spinal Disord 
7, 19-28

5.  Ito, Z., Higashino, K., Kato, S., Kim, S. S., Wong, E., Yoshio-

ka, K., and Hutton, W. C. (2014) Pedicle screws can be 4 
times stronger than lateral mass screws for insertion in 
the midcervical spine: a biomechanical study on strength 

of fixation. Clinical Spine Surgery 27, 80-85

6.  Gebauer, M., Barvencik, F., Briem, D., Kolb, J. P., Seitz, S., 

Rueger, J. M., Püschel, K., and Amling, M. (2010) Evalu-
ation of anatomic landmarks and safe zones for screw 
placement in the atlas via the posterior arch. European 
Spine Journal 19, 85-90

7.  Xu, R. (2009) A free-hand technique for pedicle screw 

placement in the lower cervical spine. Orthopaedic Sur-
gery 5, S113-S114

8.  Nolte, L. P., and Beutler, T. (2004) Basic principles of 

CAOS. Injury-international Journal of the Care of the In-
jured 35, 6-16

9.  Steinmann, J. C., Mirkovic, S., ., Abitbol, J. J., Massie, J., 

., Subbaiah, P., ., and Garfin, S. R. (1990) Radiographic 

assessment of sacral screw placement. Journal of Spinal 
Disorders 3, 232-237

10.  Wang, M., and Wand, J. (2005) Application of computer 

aided navigation orthopedic surgery and medical robot 
technology in orthopedic trauma. Chinese journal of or-
thopedics and traumatology 7, 8-13

11.  Laine, T., Lund, T., Ylikoski, M., Lohikoski, J., and Schlenz-

ka, D. (2000) Accuracy of pedicle screw insertion with 
and without computer assistance: a randomised con-
trolled clinical study in 100 consecutive patients. Euro-
pean Spine Journal 9, 235-240

12.  Radermacher, K., Portheine, F., Anton, M., Zimolong, A., 

Kaspers, G., Rau, G., and Staudte, H. W. (1998) Computer 
assisted orthopaedic surgery with image based individu-
al templates. Clin Orthop 354, 28 -38

13.  Lu, S., Zhang, Y. Z., Wang, Z., Shi, J. H., Chen, Y. B., Xu, X. 

M., and Xu, Y. Q. (2012) Accuracy and efficacy of thoracic 
pedicle screws in scoliosis with patient-specific drill tem

-

plate. Medical & Biological Engineering & Computing 50, 
751-758

14.  Taku, S., Naoki, H., Shuichi, K., Masato, T., Naoko, W., Fujio, 

U., Masatoshi, S., and Kazuo, M. (2013) Multistep pedicle 

screw insertion procedure with patient-specific lamina 
fit-and-lock templates for the thoracic spine: clinical arti

-

cle. Journal of Neurosurgery.Spine 19, 185-190

15.  Shuichi, K., Taku, S., Masatoshi, S., Naoki, H., Masato, T., 

and Kazuo, M. (2014) A novel screw guiding method with 

a screw guide template system for posterior C-2 fixation: 

clinical article. Journal of Neurosurgery Spine 21, 231-
238

16.  Putzier, M., Strube, P., Cecchinato, R., Lamartina, C., and 

Hoff, E. (2017) A New Navigational Tool for Pedicle Screw 
Placement in Patients with Severe Scoliosis: A Pilot Study 
to Prove Feasibility, Accuracy, and Identify Operative 
Challenges. Clin Spine Surg. 30, E430-E439

17.  Dong, C. (2016) Clinical study of comparison between 

personalized navigation template assisted atlas pedicle 
screw placement and freehand screw placement, Beijing 
University of Chinese Medicine 50, 751-758

18.  Yoshiharu, K., Masato, N., Taketoshi, Y., Shoji, S., Takeshi, 

H., and Tomoatsu, K. (2012) Development of a new tech-
nique for pedicle screw and Magerl screw insertion using 
a 3-dimensional image guide. Spine 37, 1983-1988

19.  Miyamoto, H., and Uno, K. (2009) Cervical pedicle screw 

insertion using a computed tomography cutout tech-
nique. Journal of Neurosurgery Spine 11, 681-687

20.  Yasutsugu, Y., Fumihiko, K., Keigo, I., Yumiko, H., Tetsurou, 

H., Hiroaki, N., and Masaaki, M. (2009) Placement and 
complications of cervical pedicle screws in 144 cervical 
trauma patients using pedicle axis view techniques by 

fluoroscope. European Spine Journal 18, 1293-1299

21.  Duhem, R., Tonnelle, V., Vinchon, M., Assaker, R., and 

Dhellemmes, P. (2008) Unstable upper pediatric cervical 
spine injuries: report of 28 cases and review of the liter-

ature. Child's nervous system : ChNS : official journal of 

the International Society for Pediatric Neurosurgery 24, 

test-html.html
background image

Yong-xiong He et al   

11

DOI: 10.31491

/

CSRC.2018.12.023

Clin Surg Res Commun 2018; 2(4):  

1-11

343-348

22.  Jiang, L., Dong, L., Tan, M., Yang, F., Yi, P., and Tang, X. 

(2016) Accuracy assessment of atlantoaxial pedicle 
screws assisted by a novel drill guide template. Archives 
of orthopaedic and trauma surgery 136, 1483-1490

23.  He, Y., Liu, B., Zhang, L., Wang, D., Bao, C., Dong, J., Liu, C., 

Yu, H., Liu, B., and Peng, Y. (2013) Individualized treat-
ment of atlantoaxial vertebra and matters needing atten-
tion. Chinese journal of clinicians (electronic edition), 
193-194

24.  Yang, S. Y., Boniello, A. J., Poorman, C. E., Chang, A. L., 

Wang, S., and Passias, P. G. (2014) A review of the diag-
nosis and treatment of atlantoaxial dislocations. Global 
spine journal 4, 197-210

25. 

Huang, X., Li, F., Zhang, F., Wang, K., Wang, Z., Yang, Q., 

Dang, R., Su, J., Shen, H., and Li, M. (2014) Experimental 
study of cervical pedicle screw placement assisted by 

individualized 3d printing navigation template. Chinese 
journal of orthopaedic surgery 22, 1880-1884

26.  Kaneyama, S., Sugawara, T., and Sumi, M. (2015) Safe and 

accurate midcervical pedicle screw insertion procedure 

with the patient-specific screw guide template system. 

Spine (Phila Pa 1976) 40, E341-348

27.  Yong, H., Zhen-Shan, Y., Kepler, C. K., Albert, T. J., Hui, X., 

Jian-Bing, Y., Wei-Xin, D., and Cheng-Tao, W. (2014) Devi-
ation analysis of atlantoaxial pedicle screws assisted by 
a drill template. Orthopedics 37, 420-427

28. 

Ma, T., Xu, Y. Q., Cheng, Y. B., Jiang, M. Y., Xu, X. M., Xie, L., 

and Lu, S. (2012) A novel computer-assisted drill guide 
template for thoracic pedicle screw placement: a cadav-
eric study. Archives of Orthopaedic & Trauma Surgery 
132, 65-72Uniportal video-assisted thoracoscopic bron-
chovascular, tracheal and carinal sleeve resections†. Eur 
J Cardiothorac Surg 49, i6-16