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Abstract
GHK (glycyl-L-histidyl-L-lysine) is a naturally occurring peptide found in human serum with levels averaging 
200 ng/ml at age 20 but declining to an average of 80 ng/ml by age 60. The molecule has a very high affinity for 
copper and forms the chelate GHK-Cu. The peptide as well as its Cu (II) chelate have anti-inflammatory and tis-
sue remodeling properties. GHK-Cu has been shown to promote skin remodeling, wound healing and regenera-
tion, and has prominent antioxidant and anti-inflammatory effects in in vitro and in vivo studies. In addition, 
preliminary observations suggest GHK can partially reverse cognitive impairment in aging mice by targeting 
anti-inflammatory and epigenetic pathways. The evidence as presented provides the rationale to further inves-
tigate this naturally occurring peptide in preclinical and clinical aging studies.
Keywords: GHK peptide, GHK-Cu chelate, anti-aging, antioxidant, anti-inflammatory, age-related cognitive im-
pairment

What is GHK?

GHK (glycyl-L-histidyl-L-lysine) is a naturally occurring 
peptide originally found in human serum and shown to 
stimulate growth in hepatoma cells [1]. The molecule has 
a very high affinity for copper (II) and forms the chelate 
GHK-Cu. The plasma level of GHK is about 200 ng/ml at 
age 20 but declines to 80 ng/ml by age 60. However, no 
studies have yet been reported linking low serum GHK 
levels with specific aging processes or age-related disease. 
The peptide is cleaved and released from its parent protein 
SPARC during the degradation of extracellular matrix, 
to aid in tissue remodeling by increasing levels of angio-
genesis [2]. Both GHK and GHK-Cu have been shown to 
have anti-inflammatory and tissue remodeling properties. 
GHK-Cu has been studied in clinical research showing 
positive effects on skin remodeling and regeneration. 

The tissue remodeling effect of GHK

* Corresponding author :Warren Ladiges
Mailing address: Department of Comparative Medicine, School 
of Medicine, University of Washington, Seattle, WA 98195, 
USA.
E-mail: wladiges@uw.edu
Received: 06 March 2020 / Accepted: 09 March 2020

GHK-Cu has been extensively studied for its tissue re-
modeling and wound healing abilities for nearly four 
decades [3]. GHK-Cu at a concentration of 1nM increases 
the expression of basic fibroblast growth factor (bFGF) 
and vascular endothelial growth factor (VEGF) in irradi-
ated human dermal fibroblasts, both of which aid blood 
vessel formation and blood flow into damaged tissues [4-
6]. It also increases HUVECs proliferation by stimulating 
VEGF and FGF-2 expressions, promoting angiogenesis 
that aids in wound healing [7]. GHK-Cu at low concentra-
tions is a powerful attractant for capillary cells that build 
new blood vessels, and a powerful migration stimulant for 
macrophages and mast cells that remove damaged cellular 
debris and secrete proteins important for wound contrac-
tion and tissue healing [8-9]. Since copper is an important 
trace element that plays a key factor in the production of 
collagen and elastin, GHK-Cu can be a natural supplement 
for copper in the connective tissue synthesis [10-11]. It is 
also involved in the activation of the synthesis of matrix 
compounds in vivo, which are critical for the formation of 
a resistant new tissue [12-13]. 
Moreover, GHK-Cu promotes bone healing and enhances 
osteoblastic cell attachment, potentially through the in-
crease in collagen synthesis [14-15]. Articular injection 
of 0.3 mg/ml GHK-Cu enhances some of the healing out-
comes in a rat model of anterior cruciate ligament recon-
struction (ACLR), and the treatment of GHK-Cu encapsu-
lated in liposome significantly fasten burn wound healing 
in mice with scald wound [7, 16]. In addition to wound 
healing studies in mice, clinical studies have been done on 
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the effect of GHK-Cu on skin regeneration, which show a 
more rapid healing process and better skin conditions with 
GHK-Cu in the skin cream [3, 17].

The anti-inflammatory effect of GHK

Both GHK and its copper (II) complex GHK-Cu have 
been studied for antioxidant and anti-inflammatory ac-
tivities. Without being bound to copper, GHK has been 
shown to be a quencher of cytotoxic end products of lipid 
peroxidation such as α,β-4-hydroxy-trans-2-nonenal and 
acrolein, which can be associated with severe patholo-
gies such as diabetes and neurodegenerative disease [18-
19]. With a concentration as low as 10uM, the addition 
of GHK can reduce the tert-butyl hydroperoxide-induced 
reactive oxygen species (ROS) level in Caco-2 cells by 
almost 50-percent. Moreover, GHK has been shown to 
be a quencher for hydroxyl and peroxyl radicals by ESR 
spectroscopy, with its ability to quench hydroxyl radicals 
much stronger than glutathione (GSH), making it a strong 
endogenous antioxidant [20]. In a bleomycin-induced 
fibrosis mouse model, treatment with GHK showed re-
duced inflammatory cell infiltration and interstitial thick-
ness with reduced TNF-α and IL-6 expression, suggesting 
GHK as a potential treatment for pulmonary fibrosis [21]. 
Compared with GHK, its copper (II)-chelated form shows 
a more prominent antioxidant and anti-inflammatory effect 
in both in vitro and in vivo studies. Pretreatment of RAW 
264.7 macrophage cells with GHK-Cu has been shown to 
significantly decrease ROS levels induced by lipopolysac-
charide (LPS), increase levels of SOD activities and total 
GSH, and decrease levels of TNF-α and IL-6 production 
through the suppression of NF-κB p65 and p38 MAPK 
signaling [22]. Both signaling pathways are key regulators 
of inflammation and pro-inflammatory responses, which 
are considered targets for developing anti-inflammatory 
therapeutic agents [23-26]. In the LPS-induced acute 
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nificantly suppressed TNF-α and IL-6 expression with a 
significant decrease of both NF-κB p65 and p38 MAPK 
signaling, suggesting that GHK-Cu is useful for the de-
velopment of novel anti-inflammatory therapies [22].  We 
have also found that pretreatment of GHK-Cu has a robust 
antioxidant effect in WI-38 cells treated with 150uM of 
hydrogen peroxide, decreasing the ROS level to almost 60 
percent (Figure 1).

GHK partially reverses age-related cognitive 
impairment in mice

Since GHK is absorbed at a high efficiency across the 
blood brain barrier into the brains of rodents and nonhu-
man primates when delivered parenterally, testing the ef-
fects of the peptide on neurological function is warranted. 
C57BL/6 male mice, 28 months of age, were treated with 
GHK at a dose of 10 mg/kg body weight 5 times per week 
for three weeks. Control mice were treated with saline 
in a similar manner. Mice treated with GHK were able 
to find the escape hole significantly faster in trials 4 and 
5 compared to mice treated with saline (Figure 2) as as-
sessed by a Box Maze spatial navigation learning task [27] 
at the end of the treatment period. Immunohistochemistry 
of brain tissues from mice treated with GHK showed evi-
dence of decreased inflammation and increased labeling 
of histone deacetylase 2, suggesting that in addition to an 
anti-inflammatory effect, GHK may be triggering an epi-
genetic pathway in the amelioration of cognitive impair-
ment in aging mice. 

Summary and future directions

The ability of GHK and its Cu chelate to promote skin 
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Figure 1. ROS level was measured in WI-38 cells treated with 150uM 
hydrogen peroxide (H2O2), with or without pretreatment of GHK-
Cu. ROS readout is shown in the y-axis as percentage, with H2O2 

150uM group being 100 percent. Cells pretreated with GHK-Cu at 
a concentration of 10nM and 10uM showed significant decrease in 
ROS. All data represent the mean ± SEM, n=6. **p < 0.01, *p < 0.05, 
statistically significant difference between GHK-Cu treated cells and 
control cells.
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Figure 2.  C57BL/6 male mice, 28 months of age, treated with GHK 
at a dose of 10 mg/kg body weight 5 times per week for 3 weeks 
showed improved learning compared to saline treated control mice. 
Data represent the mean ± SEM, n=10/cohort, *p < 0.05 statistically 
significant difference.
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remodeling, wound healing and regeneration, and its 
prominent antioxidant and anti-inflammatory effects are 
qualities that will help enhance healthy aging [28-31]. In 
addition, the novel observation that GHK might target an 
epigenetic pathway further enhances its potential as an an-
ti-aging peptide [32]. The evidence as presented provides 
the rationale to further investigate this naturally occurring 
peptide in preclinical and clinical aging studies. The ben-
efits of GHK in terms of long-term effects on slowing ag-
ing could have a high impact on increasing the quality of 
life with increasing age. There is also the possibility that 
GHK could be extremely useful combined with other anti-
aging drugs as a cocktail [33] to robustly enhance healthy 
aging.
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