Vitiligo, a degenerative disease: from oxidative stress to cellular senescence
Yaojun Wang1, Qiang Li3*.


1. Graduate School,Hebei North University, Zhangjiakou, China, 075000
2. Department of Dermatology, Air Force Medical Center, PLA, Beijing, China, 100142.

*Corresponding authors：Qiang Li
Correspondence should be addressed to Qiang Li; 16585260@qq.com

ABSTRACT
Vitiligo is a depigmentation disorder characterised by the loss of melanocytes in the skin, which is aggravated by oxidative stress. The study of melanocyte senescence in vitiligo has received considerable attention in recent years. The relationship between oxidative stress and cellular senescence is unclear. It has been shown that many chronic diseases associated with oxidative stress, i.e. degenerative diseases, ultimately result in cellular senescence as a consequence of sustained activation of reactive oxygen species. This study aims to provide a summary of the role of oxidative stress and melanocyte senescence in vitiligo, and to investigate the mechanisms by which melanocyte senescence interacts with oxidative stress. These findings will help make way for research into the pathophysiology of vitiligo and its treatment options.
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Vitiligo is characterized by the death or loss of melanocytes and its etiology is complex and unclear [1]. Oxidative stress has been implicated in the etiology of vitiligo and melanocyte destruction in a number of investigations [2-4]. Oxidative stress causes a redox homeostasis imbalance in melanocytes, characterized by excessive synthesis and poor clearance of reactive oxygen species (ROS). Due to the oxidation-promoting state produced by epidermal melanocytes and the disruption of internal antioxidant defenses during melanin synthesis, melanocytes produce too much ROS to form hydrogen peroxide (H2O2) during melanogenesis, leaving melanocytes vulnerable to oxidative stress attack [2, 4]. Previous research has shown that melanocytes in non-lesional skin of vitiligo patients have abnormal characteristics compared to normal melanocytes [5-7], including increased susceptibility to oxidative stress, easy shedding of skin after friction, and increased production of bioactive proteins (e.g. IL-6 and matrix metalloproteinase-3) of the senescence-associated secretory phenotype (SAPS).

Hayflick and Moorhead were the first to characterize cellular senescence (1961). Cellular senescence is defined as the cessation of normal cell division due to cellular stressors such as DNA damage, proinflammatory responses, mitochondrial malfunction, or telomere shortening [8, 9]. Tissue regeneration, wound healing, and embryonic development have all been demonstrated to benefit from senescent cells in vivo [10-12]. SASP, which comprises several proinflammatory cytokines, chemokines, and growth factors, is primarily responsible for senescent cells' negative impacts. Senescent cells can also communicate with neighboring cells by transferring proteins to them [13]. For example, senescent cells can secrete SASP factors, which can cause paracrine senescence in normal neighboring cells [14], and long-term exposure to SASP impairs the regenerative capacity of mouse keratin-forming cells [15]. Senescent cells can also modulate the immune response, thereby facilitating the clearance of senescent cells [16]. Numerous studies have demonstrated that oxidative stress has an important role in the process of melanocyte senescence. In this review, we discuss how ROS are generated, how vitiligo melanocytes respond to oxidative stress, and the molecular and signaling pathways by which oxidative stress induces vitiligo melanocyte senescence.


1. Oxidative and antioxidant systems of cells
Oxidative stress is considered one of the most critical triggers of vitiligo, although there is no consensus on the exact cause of vitiligo [17]. Oxidative stress is a disturbance in redox homeostasis characterized by an imbalance of pro-oxidants and antioxidants. Oxidative stress in tissues and cells is always caused by an excess of reactive oxygen species (ROS), which contain hydrogen peroxide, hydroxyl radicals, hypochlorous acid, and hydrogen peroxide radicals [18]. Previous studies have focused on endogenous ROS production due to metabolic activity, but many environmental stimuli, including cytokines, ultraviolet (UV) radiation, chemotherapeutic drugs, high temperatures, and even growth factors, can produce high levels of ROS, thereby disrupting normal redox homeostasis and converting cells to a state of oxidative stress [19-21]. On the other hand, ROS can be attributed to a range of internal stimuli: (a) cellular metabolic processes, which are inherited, such as melanogenesis, which requires more energy; and (b) abnormal mitochondrial energy metabolism, which ultimately leads to cell proliferation/differentiation/apoptosis [22, 23]. During melanogenesis, the production of ROS generates dopaquinone from dopa and then dopachrome, making melanocytes more susceptible to oxidative damage [24]. In addition, melanogenesis is an energy-consuming process that requires large amounts of adenosine triphosphate (ATP). The biogenesis of ATP itself is accompanied by the production of ros in the mitochondria and the formation of H2O2 in the epidermis [25]. Overall, these changes place the melanocyte at the center of ROS accumulation.

In addition, a complex system of enzymatic and non-enzymatic antioxidant defenses, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), can counteract and regulate overall ROS levels to maintain physiological homeostasis [26]. Several studies have also found that oxidative stress is an important factor in DDR activation and that telomeres are particularly sensitive to a homeostatic imbalance of ROS [27, 28]. Mitochondria are a major source of ROS production and are considered a key component in the generation and replenishment of DNA damage foci, which are important effectors of cellular senescence [29, 30]. Thus, under the influence of external and internal factors, melanocytes can produce more ROS, causing an imbalance in the intracellular antioxidant system and inducing apoptosis and loss of melanocytes.

2. melanocyte senescence
2.1 Overview of cellular senescence
Cellular senescence is a tumor-suppressive program initiated by many stress signals, including telomere wear, DNA damage response (DDR), oxidative damage, subculture conditions, and abnormal oncogene activation [31]. The hallmark of cellular senescence is the permanent inhibition of proliferation, which cannot be overcome by physiological mitogenic stimuli. Depending on the method of induction and the mechanisms involved, cellular senescence can be classified into three types. The earliest and most intensively studied type of cellular senescence is replicative senescence (RS), which is characterized early on by telomere wear and activation of the P53/p21 pathway [32, 33]. The second type of cellular senescence is known as stress-induced premature senescence (SIPS), which is induced by various stresses, such as oxidative stress and UV light [34-36]. A third type is oncogene-induced senescence (OIS), which is overactivated by several oncogenes, particularly the RAS gene [37-39]. In conclusion, SIPS and OIS have no apparent telomere wear, but they play an important role in the activation of the p16/P38 pathway [40, 41].

Skin cell aging is also accompanied by several phenotypic changes, such as the aging-associated secretory phenotype (SASP) [42]. The deleterious effects of senescent cells are mainly attributed to SASP, which includes many proinflammatory cytokines, chemokines, and growth factor. Senescent cells can induce paracrine senescence in normal neighboring cells by secreting SASP factor [14], and chronic exposure to SASP can impair the regenerative capacity of mouse keratin-forming cells [15]. Several essential phenotypes have been used to identify senescent cells. They include (1) cell cycle arrest in the G1 phase, which is often detected as a lack of DNA replication; (2) flattened, enlarged cell morphology; (3) abnormal activation of lysosomes, as evidenced by positive staining for senescence-associated β-galactosidase activity (SA-β-gal) [43-46]; (4) significant chromatin heterogeneity (senescence-associated heterochromatin foci, SAHF) [47, 48 ]; (5) telomere shortening, but as mentioned above, it is not a reliable signal for SIPS and OIS [49, 50]; and (6) high expression of several cell cycle repressor genes, such as p16, p53 and p21 [32, 51-53].

2.2 Melanocytes are the main senescent population in the human epidermis
Melanocytes are the main senescent cells in the skin senescence process. As we age, senescent cells accumulate in human skin [44, 54], but most studies on skin cell senescence have focused on skin fibroblasts and little is known about the effect of melanocytes on skin senescence. Recent reports have shown that melanocytes can express the senescence marker p16ink4a and accumulate in human skin [55]. Senescent melanocytes also exhibit other senescence markers, such as reduced HMGB1 and telomere dysfunction, but not telomere shortening. p16ink4a markers were found to be localized almost exclusively to melanocytes in the epidermis in studies by Waaijer et al.. [55, 56], and therefore melanocytes are the major senescent cell population in the human epidermis.

Replicative senescence is not a major factor in melanocyte senescence. a study by Victorelli S et al..[57] found that telomeres in skin senescent melanocytes were not significantly shortened and telomeres were unlikely to occur due to extensive loss of telomeric repeat sequences, therefore telomere length was not a limiting factor in melanocyte senescence. Furthermore, fully differentiated melanocytes in the skin have an extremely low proliferative capacity in vivo and are therefore unlikely to experience sufficient telomere wear to induce replicative senescence [58]. Oxidative stress disrupts the binding of certain telomeric protein complexes to telomeres, providing a novel mechanism for telomere shortening [59]. However, the mechanisms of melanocyte senescence and whether they have a causal effect on the phenotype of skin aging remain unclear.

2.3 Senescent melanocytes induce senescence in neighboring keratinocytes
In the vitiligo skin microenvironment, senescent melanocytes can induce senescence in neighboring keratinocytes. Nelson G and Razdan N et al.. demonstrated that senescent cells can induce DNA damage and senescence in neighboring healthy cells through a mechanism of secretion of SASP and increased ROS [60, 61]. Data from Victorelli et al.. [62] showed that senescent melanocytes surrounding keratin-forming cells exhibited significant telomere damage, providing evidence for a bystander effect of senescent melanocytes in human skin. In addition, they found that conditioned medium from senescent melanocytes induced TAF in dermal fibroblasts in vitro, suggesting that the induction of paracrine TAF is mediated by soluble factors released from senescent melanocytes. Senescent melanocytes have also been shown to induce telomere dysfunction in peri-epidermal keratin-forming cells. Dysfunctional telomeres provide a source of persistent DDR for the keratinocyte population, further limiting the replicative capacity of the cells [63-65]. However, the molecular mechanisms and signaling pathways of how senescent MCs induce senescence in neighboring healthy cells are not fully understood.

Victorelli S et al.. [57] also showed that IP-10 release from senescent melanocytes activated the CXCR3 signaling pathway in peripheral cells, which would increase mitochondrial ROS production and lead to telomere dysfunction. Previous studies have also demonstrated that stimulation of CXCR3 receptors leads to increased ROS production [66]. Furthermore, others have demonstrated that these components of SASP, particularly TGF-β1, induce paracrine telomere dysfunction in a ROS-dependent manner [61]. Although the mechanisms leading to enhanced mitochondrial ROS production downstream of the CXCR3 signaling pathway have not been fully elucidated, several studies have demonstrated that Akt is phosphorylated as a consequence of CXCR3 activation [67, 68]. Indeed, Akt is involved in the signaling cascade that enhances mitochondrial ROS production during aging [30].

3. Oxidative stress induces premature senescence of vitiligo melanocytes
Vitiligo melanocyte senescence is closely related to the induction of oxidative stress. In 1998, Harman et al.. proposed the senescence radical theory, which suggests that senescence is caused by harmful tissue damage from oxidative stress-induced ROS, a key factor in the induction of melanocyte senescence in vitiligo. There is evidence of elevated levels of hydrogen peroxide (H2O2) in the epidermal environment of MCs and keratin-forming cells (KCs) of damaged and undamaged skin in vitiligo patients[69], suggesting the importance of oxidative stress in the pathogenesis of vitiligo. High levels of reactive oxygen species have been associated with various aspects of melanocyte damage, including the destruction of their DNA, lipids, proteins, and structural and functional metabolites [70]. In addition, ros-induced oxidative stress causes widespread abnormal organelle function, disrupts metabolic pathways, and impairs antioxidant defense mechanisms.

Previous studies have shown that MCS may not be completely absent in damaged skin and that MCS can proliferate and pass on in vitiligo patients in both lesions and nonlesions. However, disrupted growth of these MCSS was observed in an in vitro setting, and the addition of catalase to the culture medium significantly improved this situation. Therefore, some researchers have suggested that the increase in H2O2 in lesions may not be sufficient to kill MCSs in the early stages of vitiligo, but that H2O2 may eventually destroy these MCSs in the late stages of vitiligo [71]. In addition, many chronic diseases associated with oxidative stress are known as degenerative diseases and vitiligo may have similar features. High doses of H2O2 affect cellular mitochondrial function and trigger apoptosis. Low doses of H2O2 induce cellular senescence and expression of cell cycle proteins [72, 73]. Thus, in the early stages of vitiligo, impaired melanocyte growth induced by oxidative stress may be due to premature cellular senescence [74]. Furthermore, several molecular and cellular signaling pathways are involved in oxidative stress-induced premature senescence-like phenotypes of MCS, and skin biopsies from vitiligo patients have shown a senescent phenotype, which supports the concept that early vitiligo may be a degenerative disease [5, 34]. However, the signaling cascade associated with H2O2-induced premature senescence of MCS is not fully understood.

4. Signaling mechanisms involved in vitiligo melanocyte senescence by oxidative stress
The causes and mechanisms of melanocyte senescence in vitiligo are not fully understood. There is evidence that oxidative stress causes genomic DNA damage and ros leads to cellular senescence. In addition, many signaling proteins are involved in cellular senescence, such as P53, mitogen of P38 protein protein kinase (MAPK), NF-κB (NF-κB), mammalian target of rapamycin (mTOR), transforming growth factor (TGF-β) and other signaling channels [75]. However, little is known about the signaling mechanisms involved in vitiligo melanocyte senescence.2022 A recent study by Hou X et al.[76] showed that oxidative stress increases ROS in melanocytes, which activates the ERK1/2 and p38MAPK pathways, and that the p53-independent cell cycle protein-dependent kinase (CDK) inhibitor p21 (CDKN1A) increases, prompting The cell cycle is blocked in the M phase and cannot enter the G1 phase, resulting in the inability of cells to replicate properly and thus inducing premature melanocyte failure. ( Figure 1)

4.1 P38 signaling pathway
The P38 signaling pathway consists of MAPK and transforming growth factor-activated protein kinase (AKT)-binding protein 1, which inhibits telomerase activity and induces human T cell senescence, proliferation, and expression of T cell receptor (TCR) signaling molecules [77]. p38 MAPK signaling activation induces mTOR-mediated autophagy in senescent CD8+ T cells and enhances telomerase activity [78]. P38 MAPK activation would also trigger a DDR-independent SASP senescence phenotype [79]. Cell proliferation can be enhanced by blocking the p38 and PD1 signaling pathways [78]. Similarly, P38 MAPK inhibitors inhibit the aging of corneal endothelial cells, providing evidence for the treatment of corneal endothelial dysfunction [80].

4.2 p53/p21 and p16
P53/p21 and p16(CDKN2A) signaling are the main pathways that induce melanocyte senescence [34, 75, 81-84]. In response to oxidative stress, P53 may be activated, which in turn activates p21 for senescence induction. However, p21 can also be induced in a non-P53-dependent manner [85, 86]. Previous studies have shown that p16 plays a major role in vitiligo melanocyte senescence [5] or normal melanocyte senescence [87]. p53 signaling in cellular senescence has been studied for many years and some proteins promote p53-mediated cellular senescence, such as Aurora B kinase [88], secretory phospholipase A(2) [89], and IFN-γ [90], while other proteins inhibit p53-mediated cellular senescence, such as Sirt2 [91], Hsp27 [92] and MAD2 [93]. p53 is a molecular switch that regulates IGF1-induced premature aging [45]. Short-term exposure to IGF1 promotes cell proliferation, while long-term exposure induces cellular senescence [94]. In addition, Akt and p21 are required for the induction of cellular senescence downstream of p53 [95]. The p21 gene is a member of the clp family of cell cycle-dependent kinase inhibitors located downstream of the p53 gene. Together with p53, p21 can constitute a cell cycle G1 checkpoint that cannot be passed without repair due to DNA damage, reducing the replication and accumulation of damaged DNA and thus exerting an oncogenic effect [53].

5. Antioxidant and Antiaging Treatment for Vitiligo
Vitiligo therapy has always been challenging for dermatologists. The current vitiligo therapy does not appear to be curative. Phototherapy (psoralen mixed with UVA, narrowband UVB [NBUVB]), topical therapies (corticosteroids, calcineurin inhibitors), and systemic treatments (corticosteroids) remain in use and have a low economic impact [2, 96].

5.1 Exercise
Several studies have shown that overnutrition significantly increases the expression of senescence-associated proteins, including the activity of p16, p53, p21, and SA-β-gal [97]. Exercise can inhibit the expression of SASP-related genes and prevent the accumulation of senescent cells caused by overeating [98]. Mechanistically, exercise may reduce the metabolic and replicative stress of adipose tissue and limit the transition to senescence. In addition, exercise may promote the elimination of senescent cells by the immune system [97, 98].

5.2 Inhibition of melanocyte senescence by inhibiting oxidative stress
To understand the mechanisms of oxidative stress and cellular senescence in healthy and vitiligo melanocytes and to use these pathways for effective and targeted therapeutic and preventive measures. Natural chemicals with antioxidant potential can inhibit OS-induced aging. For example, baicalein is a flavonoid derived from the root of Scutellaria baicalensis with anti-cytotoxic, anti-inflammatory, and antitumor effects [99, 100]. In an h2o2-induced oxidative stress model of PIG1 in vitro, baicalein protected PIG1 cells from h2o2-induced oxidative stress and senescence by a mechanism involving activation of mitochondria-dependent caspases and regulation of the p38MAPK pathway [101]. In hydrogen peroxide-induced human vitiligo melanocytes (PIG3V), baicalein increased the expression of Nrf2 and its downstream gene HO-1 in PIG3V cells and promoted the translocation of Nrf2 from the cytoplasm to the nucleus, indicating that the protective effect of baicalein on melanocytes depends on the Nrf2 signaling pathway [102]. Baicalein also has an antioxidant effect on keratinocytes [103], therefore, the development of topical formulations of baicalein for vitiligo may be a feasible approach. In addition, some molecules can slow down aging by directly inhibiting the production of reactive oxygen species. For example, nicotinamide, an amide derivative of vitamin B3, can slow down aging by reducing the levels of reactive oxygen species [104].

5.3 Inhibition of cellular senescence-related pathways
Given that many signaling pathways play an important role in the process of senescence, it is possible to inhibit senescence by inhibiting these pathways. In one study, treatment was found to induce tumor cell senescence, during which Bcl2-associated athanogene 3 (Bag3) was increased [105]. Importantly, knockdown of Bag3 or vault protein (MVP) impairs ERK1/2 activation and promotes treatment-induced apoptosis in senescent cells [105]. A similar study found that inhibition of the MEK/ERK pathway promotes the clearance of Ras-transformed senescent cells, resulting in the inability of these cells to form the necessary autophagosomes to clear damaged mitochondria and cause apoptosis [106].

6. Outlook
In summary, we discussed the following aspects; first, oxidative stress is a key initiating factor in vitiligo; second, ROS-induced melanocyte senescence in vitiligo is the major senescent group of skin cells; third, IP-10 released from senescent melanocytes in vivo activates the CXCR3 signaling pathway in peripheral keratinocytes, which in turn phosphorylates them by activating Akt, which increases mitochondrial ROS production, leading to telomere dysfunction and causing senescence in peripheral keratinocytes; fourth, we discuss that oxidative stress drives increased ROS in melanocytes, activating the ERK1/2 and p38MAPK pathways, and an increase in p53-independent p21 (CDKN1A), inducing premature melanocyte senescence. Finally, we explored the role and mechanisms of some antioxidant and anti-aging drugs in vitiligo treatment.

In the context of genetic susceptibility, ROS plays a key role in the development of vitiligo, ROS contributes to the destruction of melanocytes in many ways in the beginning stages, such as melanocyte senescence. Furthermore, cellular senescence plays an important role in both normal states and physiological conditions. Since its discovery, many important studies on the role and molecular mechanisms of cellular senescence have been completed. However, the role of melanocyte aging in the development of vitiligo has not been fully elucidated. More challenging questions have been raised. First, the relationship between cellular senescence and the immune response remains elusive. For example, it is unclear whether senescent cells activate adaptive immunity and provide defense for the body. It is also possible that other novel signaling pathways are involved in the aging of vitiligo melanocytes. Overall, the study of cellular senescence is only the beginning and there are more interesting questions to be addressed in the future.
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Figure 1. Schematic illustration of oxidative stress-induced skin cell senescence. (1)oxidative stress increases ROS in melanocytes, which activates the ERK1/2 and p38MAPK pathways, and the p53-independent cell cycle protein-dependent kinase (CDK) inhibitor p21 (CDKN1A) to increase, prompting The cell cycle to be blocked in the M phase and cannot enter the G1 phase, resulting in the inability of cells to replicate properly and thus inducing premature melanocyte failure. (2) IP-10 released from senescent melanocytes activates the CXCR3 signaling pathway in peripheral keratinocytes, which in turn phosphorylates it by activating Akt, which increases mitochondrial ROS This would increase mitochondrial ROS production, leading to telomere dysfunction and causing peripheral keratinocyte senescence
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