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Abstract 14 

 15 

Early changes in cerebrovascular hemodynamics and endothelial function can contribute 16 

to altered cognitive function and systemic vascular stiffness later in life. Accordingly, 17 

vascular pathology accompanies the mechanisms underlying aging. The development of 18 

chronic cerebral hypoperfusion, which leads to a lack of blood flow to the brain, is a 19 

common trait despite the various and complex pathogenic mechanisms causing these 20 

vascular alterations. Drugs or other bioactive compounds can be incorporated into a "high 21 

density lipoprotein-like" ("HDL-like") lipid nanocarrier to create a multifunctional 22 

"combination therapeutic" that can target cell-surface scavenger receptors, primarily SR-23 

BI. The enhanced endocytosis of the nanocarrier's drug contents into various target cells, 24 

made possible by this proposed (biomimetic-nanocarrier) therapeutic vehicle, increases 25 

the likelihood that this multitasking "combination therapeutic" will be more effective at 26 

various stages of dementia. 27 
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1. Introduction 33 

Emerging evidence from numerous animal models indicates that in the development of 34 

Alzheimer's disease, cerebrovascular dysfunction frequently precedes both cognitive 35 

decline and the start of neurodegenerative alterations [1-4]. In light of this fact, mixed 36 

pathology – which displays both Alzheimer's disease and vascular abnormalities – has 37 

been identified as the most frequent cause of clinical dementia in elderly people [5]. The 38 

senile plaques (or characteristic lesions of Alzheimer's disease) are extracellular deposits 39 

mostly composed of insoluble aggregates of amyloid-β protein (Aβ) fibrils and are 40 

infiltrated by reactive microglia and astrocytes. Aβ fibrils cause the production of 41 

neurotoxins like reactive oxygen species, by microglia, and have a damaging effect on 42 

neurons. Microglia have been implicated as scavenging cells that are responsible for 43 

clearing Aβ fibril deposits of Alzheimer's disease. Accordingly, microglial scavenger 44 

receptors have already been described as novel targets for therapeutic interventions in 45 

Alzheimer's disease [5]. 46 

 47 

2. Targeted Nanotherapy for Late-Onset Dementia 48 

A breakdown of the blood-brain barrier (BBB) resulting from structural changes to the 49 

cerebral microvasculature are examples of the vascular abnormalities connected to small-50 

vessel illness. Therefore, it is not unexpected that numerous epidemiological studies have 51 

found a significant overlap between the risk factors for late-onset Alzheimer's disease and 52 

small-vessel cerebrovascular illness [3]. 53 

As specifically regards drug targeting, it has been documented repeatedly that cell-54 

surface scavenger receptors, primarily class B type I (i.e., SR-BI), allow for the 55 

pharmacological targeting [3,6-13] of endothelial regulation and/or repair [13-15]. 56 

Moreover, the earlier reviewed [3,6)] "lipid-coated microbubble/nanoparticle-derived" 57 

(LCM/ND) nanoemulsion can conceivably function as a targeted, apoA-I-based, (SR-BI 58 

mediated) therapeutic agent for common (late-onset) dementias. Specifically, this 59 

expectation is based on the fact that SR-BI has already been identified as a major receptor 60 

for high-density lipoprotein or HDL (with their major apolipoprotein (apo)A-I) [16-18]. 61 

Such LCM/ND nanoemulsions may well be able to partially imitate the heterogeneity of 62 



HDL particles due to similarities in the lipid content, which has been documented  63 

previously [3,5,6], between HDL and these nanoemulsion (drug-carrier) particles. 64 

The ongoing discoveries of cerebrovascular pathology [5,6,19-29] and an apparent 65 

endothelium dysfunction [3,17,18,25,30-36], in both Alzheimer's disease and its major 66 

risk factors [5,6,29-41], provide additional impetus for this particular targeted delivery 67 

approach which uses the proposed LCM/ND lipid nanoemulsion for treating the more 68 

prevalent (late-onset) dementias. Adding certain drug molecules to the LCM/ND lipid 69 

nanoemulsion type, which is known to be an effective drug carrier [3,42,43], would make 70 

the following possible: Multiple cell types, which are often implicated in Alzheimer's 71 

disease [6], can be simultaneously nanotargeted via cell-surface SR-BI [42,43]. 72 

 73 

3. Biobased Lipid Nanoemulsion: Size Distribution and Safety Studies 74 

Physical characterization of the actual size distribution of the LCM/ND lipid 75 

nanoemulsion particles has already been extensively explored [3]. In these studies, the 76 

scattered light was measured using five distinct optical particle counters (different models) 77 

that were all produced by Particle Measuring Systems (Boulder, CO). Given that all of 78 

the data were essentially identical, it can be concluded that the LCM/ND lipid 79 

nanoemulsion did not vary in particle size under the various concentration settings. Over 80 

a period of time (at least one month), there was no discernible change in the size 81 

distribution [3]. When measured with optical particle counters, this nanoemulsion type 82 

contains close to 10 billion particles (< 0.1 μm) per ml. 90% or more of the nanoemulsion 83 

particles had diameters of less than 0.2 μm. 84 

The risk of embolism is negligible because neither in vitro nor in vivo investigations have 85 

demonstrated that the LCM/ND lipid nanoemulsion particles aggregate or coalesce into 86 

any "superparticle or microbubble-like" structure more than 5 µm [3]. The acute 87 

intravenous LD50 for both species was determined to be greater than 4.8 ml/kg. 88 

Furthermore, no overt toxicity or mortalities were observed at a dose of 4.8 ml/kg [3]. 89 

Using the same (isotonic) lipid nanoemulsion agent, it was determined in additional 90 

animal (range-finding subchronic intravenous) toxicology studies [3] that the following 91 

toxicology outcomes were seen at intravenous doses of 0.14 ml/kg given three times a 92 



week for six weeks (in rats) and 0.48 ml/kg given three times a week for three months (in 93 

rabbits): The blood chemistry, liver functions, hematology, and coagulation profile did 94 

not change adversely, and neither did the the histology of the adrenals, bladder, brain, 95 

heart, kidney, liver, lungs, marrow, pituitary, spleen, testes, thyroid, and ureters [3]. 96 

 97 

4. Biobased LCM/ND Nanoemulsion Type Consists of Lipid Cubic Phases 98 

A noteworthy lipid cubic phase (i.e., Fd3m) is created by a variety of lipid mixtures, 99 

when dispersed in water, and is based on packings of discrete inverse micellar aggregates 100 

[3,44,45,47-50]. The LCM/ND lipid nanoemulsion is particularly pertinent to the 101 

dispersed Fd3m cubic phase because both of these lipid structures frequently contain 102 

cholesterol and three types of (saturated) glycerides, namely tri-, di-, and monoglycerides 103 

[51,52]. 104 

Given that these nanoemulsion particles are expected to adsorb apoA-I (see Sect. 2, 105 

paragr. 2), it is plausible that they will be effective at their intended targets [3]. Again, 106 

when the aforementioned information is combined with the known heterogeneity of HDL 107 

particles and the well-documented multiligand capability of SR-BI, this receptor emerges 108 

as the top candidate (of all lipoprotein receptors) for major involvement in the enhanced 109 

endocytosis of LCM/ND nanoemulsion particles into, and transcytosis across, the 110 

endothelial cell layer of the BBB [3]. 111 

 112 

5. Concluding Remarks 113 

The use of lipid nanocarriers, such as nanoemulsions, to circumvent the barriers that 114 

prevent medication transport across the BBB has, very recently, brought these materials 115 

back into the spotlight. Particularly, the "HDL-like" lipid nanoemulsion type (also 116 

referred to as "LCM/ND nanoemulsions" [3,5,6] ) displays a natural tendency to target 117 

SR-BI receptors (cf. above) and, therefore, would likely act to increase the total 118 

comcentration of (targeted) drug in the brain parenchyma – due to this nanocarrier's 119 

direct interaction with SR-BI receptors on the BBB. Additionally, this particular targeting 120 

behavior can facilitate the drug's enhanced endocytosis into various target cells [3,5,6,53-121 



55], which in turn raises the possibility this "HDL-like" nanoemulsion will be more 122 

effective at different stages of dementia (cf. [28]) when used as a multitasking (drug-123 

carrying) therapeutic vehicle. 124 

125 
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