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Abstract 14 

Sarcopenia is an aging-associated muscle disease characterised by loss of skeletal 15 

muscle mass and strength, with or without loss of physical performance, which can 16 

increase the risk of falls, fractures, disability and death. Parkinson's disease (PD) is 17 

the second most common neurodegenerative disease and one of the diseases with the 18 

greatest increase in prevalence, disability and mortality in recent years. The 19 

occurrence of sarcopenia is more prevalent in patients with PD. In order to improve 20 

the survival status and prognosis of patients with PD combined with sarcopenia, this 21 

article reviews the progress of research related to the epidemiology, diagnostic criteria, 22 

pathogenesis, adverse outcomes, and treatment of PD combined with sarcopenia at 23 

home and abroad in recent years.  24 

Keywords: sarcopenia; Parkinson's disease; diagnosis; pathogenesis  25 
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Introduction 26 

 27 

Since the first definition of sarcopenia in 1988, several definitions of sarcopenia have 28 

been developed by different working groups or societies, with the most used 29 

definition being developed by the European Working Group on Sarcopenia in Older 30 

People (EWGSOP): sarcopenia is an ageing-associated muscular disease characterised 31 

by loss of skeletal muscle mass and strength with or without loss of physical 32 

performance, which can increase the fall, fracture, disability and death risk[1].The 33 

increasing prevalence of sarcopenia has become a serious global public health 34 

problem, posing a serious threat to the quality of life and survival prognosis of 35 

patients. It is characterised by a loss of muscle mass and strength associated with 36 

aging and chronic diseases such as PD [1].PD is the second most common 37 

neurodegenerative disease and one of the diseases with the greatest increase in 38 

prevalence, disability and mortality in recent years [2]. It is expected that by 2030, 39 

there will be approximately 5 million PD patients in China, accounting for about half 40 

of the PD patients worldwide [3]. Its clinical features are characterised by motor 41 

symptoms such as bradykinesia, resting tremor, rigidity and postural instability.Motor 42 

symptoms in patients with PD can lead to a decrease in muscle strength, performance 43 

and muscle mass [4]. PD is involved in the development of sarcopenia, and the 44 

clinical presentation and severity of PD is a determining factor that directly affects 45 

sarcopenia [5]. 46 

Neurodegenerative diseases and muscle loss associated with aging increase the risk of 47 

PD sarcopenia in older adults, seriously affecting their physical and psychological 48 

health. Effective screening and rational diagnosis and treatment of sarcopenia are of 49 

great significance in improving the quality of life of the elderly and alleviating the 50 

medical and economic pressure on the society. In this article, we review the progress 51 

of research on the epidemiology, diagnostic criteria, mechanisms, adverse effects and 52 

treatment of PD sarcopenia at home and abroad, with the aim of strengthening the 53 

national awareness, improving the identification, prevention and treatment capabilities, 54 

and improving the survival and prognosis of PD patients with sarcopenia. 55 

 56 

Epidemiology of Parkinson's disease combined with sarcopenia 57 

Currently, the overall prevalence of sarcopenia in community-dwelling populations is 58 

10 per cent globally[6]. However, the prevalence of sarcopenia tends to vary 59 

according to different diagnostic criteria: the prevalence of sarcopenia in the general 60 
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population according to the EWGSOP, EWGSOP2 and Asian Working Group on 61 

Sarcopenia (AWGS) classifications is 22%, 10% and 15%, respectively [7]. The 62 

prevalence of sarcopenia is higher in patients with PD than in age- and sex-matched 63 

healthy elderly controls [8-10]. The prevalence of sarcopenia in PD ranges from 10.9% 64 

to 31.4% [11]. In PD patients, sarcopenia is significantly more prevalent in men than 65 

in women, which may be due to the fact that female PD patients exposed to the same 66 

dose of levodopa as male controls have more side effects due to low body weight, 67 

such as dyskinesia, which acts as an exercise, increases energy expenditure, and 68 

affects body composition[9]. However, the prevalence of sarcopenia in PD varies in 69 

different studies. According to EWGSOP2010, the prevalence of sarcopenia in PD 70 

ranges from 6-31.4% [8, 9, 12, 13]；according to AWGS2019, the prevalence of 71 

sarcopenia is 40%[10]. Differences between these studies may be related to diagnostic 72 

criteria, muscle mass measurement techniques, different thresholds for the muscle 73 

mass index used to define sarcopenia, and the inclusion of patients with PD with their 74 

own characteristics [14]. 75 

 76 

Diagnosis of sarcopenia 77 

1. Main diagnostic methods 78 

1.1 Screening 79 

Calf circumference and the SARC-F questionnaire: Calf circumference is measured 80 

using a non-elastic band to measure the maximum circumference of the calves 81 

bilaterally, and the "finger-ring test" can be used as a valid alternative to measuring 82 

calf circumference.The SARC-F questionnaire involves five functional statuses of 83 

older adults, and the scale has low sensitivity and high specificity, which allows for 84 

the accurate identification of impaired physical function and is associated with poor 85 

clinical outcomes[15]. The SARC-F has the advantage of being a simple, rapid and 86 

effective screening tool that is independent of instrumentation and thresholds, and 87 

independent of age and gender differences.The addition of calf circumference to the 88 

SARC-CalF questionnaire improves the sensitivity of the SARC-F. 89 

1.2 Muscle strength  90 

Upper extremity grip strength has been widely recognised as an indicator of muscle 91 

strength. The most commonly used grip strength measurement is the spring-loaded 92 

grip strength device, followed by the hydraulic grip strength device. The use of two 93 

types of grip strength devices: (1) hydraulic grip strength device: take a sitting 94 

position, 90 ° elbow flexion to measure grip strength; (2) spring-loaded grip strength 95 
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device: standing position, elbow extension to measure grip strength; if the elderly can 96 

not stand independently, then choose to sit to measure. Use the dominant hand or both 97 

hands respectively, maximum force isometric contraction, at least 2 tests, select the 98 

maximum reading. In addition, it is recommended to use an electronic grip strength 99 

device with a digital display to ensure the accuracy of the data. 100 

1.3 Skeletal muscle mass 101 

The most commonly used instruments for measuring skeletal muscle mass(SMM) are 102 

Dual Energy X-ray Absorptiometry (DXA) and Bioelectrical Impedance Analysis 103 

(BIA).BIA calculates percent body fat from electrical impedance, and its 104 

measurements are highly correlated with body water content. DXA is highly accurate, 105 

has low radiation exposure, is easy to perform, and is capable of evaluating regional 106 

distributions of fat and muscle. The multi-frequency BIA instrument is the closest to 107 

the DXA measurements of extremity SMM.So AWGS2019 recommends using either 108 

the DXA or multi-frequency BIA in combination with height correction to measur 109 

SMM. [16]. 110 

1.4 Physical function   111 

The Simple Physical Performance Battery (SPPB), step speed, The five-repetition 112 

sit-to-stand test（5STS）, the Time-Up-Go test (TUG), and the 400m walk test were 113 

used to assess somatic function. The SPPB is a comprehensive somatic function test 114 

tool with three components: the three-posture test, including standing with feet 115 

together, standing with feet in a half tandem anteroposteriorly and anteriorly and 116 

posteriorly and standing with feet in a tandem anteriorly and posteriorly, with each 117 

posture being tested for 10s; the gait test; and the 5STS.Step speed is the simplest, 118 

quickest and safest method of assessing somatic function. TUG measures the time it 119 

takes to walk a certain distance at a normal walking speed from the start of movement, 120 

without acceleration or deceleration, and is measured at least twice, with the average 121 

speed recorded.TUG can reflect the individual's balance and walking ability. The 122 

TUG measures the time it takes for a subject to rise from a seat of about 46cm in 123 

height, complete a 3m round trip walk at the fastest and steadiest speed, and finally sit 124 

back in the chair, and the measurement is repeated at least twice, with the shortest 125 

time recorded. 400m walk can test the walking ability and endurance of the elderly. 126 

Subjects are required to complete the walk as fast as they can, with up to 2 breaks. 127 

Due to its long duration and high physical demands, it is not suitable for the elderly or 128 

frail, and is currently only used in scientific research. 129 

 130 
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2. Cutoff value for diagnosis     131 

Currently, EWGSOP, the International Working Group on Sarcopenia (IWGS), AWGS, 132 

and Foundation for the National Institutes of Health (FNIH) have developed and 133 

recommended parameters and diagnostic cut-points for the assessment of sarcopenia 134 

that are appropriate for their own regional populations, which mainly include 3 135 

aspects of muscle mass, muscle strength, and somatic capacity, as shown in Table 1. 136 

Comparing AWGS2019 and AWGS2014, the diagnosis of sarcopenia has been 137 

updated in terms of grip strength and step speed thresholds. Assessment of somatic 138 

function is no longer limited to step speed, and the 5STS and SPPB can be used in 139 

place of step speed. In addition, the AWGS2019 Working Group updated the 140 

diagnostic criteria and proposed a screening programme for the community and 141 

hospitals, recommending first screening for calf circumference (< 34 cm in men and < 142 

33 cm in women) or use of the SARC-F (≥ 4 points) or SARC-CalF (≥ 11 points) 143 

questionnaires to facilitate early identification of people at risk of sarcopenia. 144 

EWGSOP2018 and AWGS2019 differ slightly in their diagnostic strategies. The 145 

definition of sarcopenia by EWGSOP2018 [1] emphasises muscle strength as the 146 

primary indicator, confirms the diagnosis of sarcopenia by detecting low muscle 147 

number and mass, and identifies poorer physical performance as a marker of severe 148 

sarcopenia.AWGS2019 [16] suggests that declines in both muscle strength and 149 

somatic functioning are the result of declines in muscle mass, and that they have a 150 

detrimental impact on prognosis. Therefore sarcopenia can be diagnosed whenever 151 

there is a decrease in muscle strength or function combined with a decrease in muscle 152 

mass. Severe sarcopenia is diagnosed if there is a decrease in both muscle strength 153 

and function. 154 

   155 

3. Diagnostic algorithm 156 

   According to AWGS 2019 [16], the diagnostic process of sarcopenia mainly 157 

includes two parts: community primary medical institutions and clinical medical 158 

institutions. Cases were detected by measuring calf circumference or SARC-CalF in 159 

community primary care Settings, and then evaluated by grip strength and five times 160 

sit up time. Lifestyle intervention and related health education are recommended for 161 

residents with possible sarcopenia, and referral to hospitals for diagnosis is also 162 

encouraged. In hospital and institutional diagnostic algorithms, initial evaluation is 163 

considered when a patient presents with typical symptoms of sarcopenia, such as 164 

muscle wasting, falls, and abnormal gait characterized by slow walking. Muscle 165 
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strength, physical function, and appendicular skeletal muscle mass were assessed. On 166 

the basis of the diagnosis of sarcopenia, if there is a simultaneous decline in muscle 167 

strength and function, it is considered as severe sarcopenia.  168 

 169 

Pathogenesis of Parkinson's disease with sarcopenia 170 

1. Disruption of the neuromuscular junction 171 

Disruption of the neuromuscular junction (NMJ) is common in several 172 

neurodegenerative diseases, including PD [17],and can induce downstream sarcopenia 173 

phenotypes, reflecting the key role of the NMJ in maintaining muscle health [18]. 174 

NMJ dysfunction often precedes muscle damage and may exacerbate the postsynaptic 175 

changes in PD-related sarcopenia[18]. The NMJ is a plastic structure that can achieve 176 

self-repair with exercise and other interventions [19]. Studies have found that exercise 177 

can maintain the plasticity of the NMJ in rodents and restore the structure and 178 

function of the NMJ in humans[20]. Neurotrophin and CAF22b have been implicated 179 

in NMJ disruption and muscle degeneration. Circulating levels of these biomarkers 180 

are significantly altered in the early stages of PD, while biomarker levels partially 181 

return to normal levels in patients after rehabilitation treatment [21]. 182 

Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic 183 

factor (GDNF) are released by muscle fibers, motor neurons, and adjacent Schwann 184 

cells and are mainly used to maintain NMJ function and mediate axon sprouting and 185 

acetylcholine receptor aggregation after denervation[22]. Plasma BDNF and GDNF 186 

levels are low in PD patients[22] , which weakens the neuroprotective ability of 187 

BDNF and GDNF and may lead to NMJ dysfunction and decreased muscle function. 188 

The loss of muscle mass and strength in the elderly is also partially attributed to the 189 

diminished protective effects of BDNF and GDNF [23]. The expression of BDNF and 190 

GDNF in the tissues of PD patients has plasticity. Exercise intervention can increase 191 

plasma BDNF and GDNF levels in the elderly , thereby improving the 192 

neuroprotective ability of BDNF and GDNF[24, 25].  193 

Aggrecan is a neuronal proteoglycan composed of two aggrecan fragments. 194 

C-terminal aggregation protein fragment 22 (CAF22) is one of the smaller fragments, 195 

which is a circulating biomarker of NMJ destruction and sarcopenia in the elderly 196 

[26]，and is released into the blood circulation as a stable non-bioactive molecule[22]. 197 

The study by Karim et al.[21]found that patients before treatment had a significant 198 

reduction in grip strength and a significant increase in plasma CAF22 levels. 199 

Rehabilitation training can reduce plasma CAF22 levels while restoring grip strength, 200 
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and promote NMJ recovery and muscle health. 201 

 202 

2. Chronic inflammation 203 

Chronic inflammation is considered as a potential pathological condition[27]. 204 

Elevated levels of circulating inflammatory mediators, including interleukin-6(IL-6) 205 

and tumor necrosis factor-α(TNF-α), were detected in both patients with early PD and 206 

those with sarcopenia. High levels of IL-6 can lead to sarcopenia[28]. A randomized 207 

controlled trial of 99 older adults with limited mobility identified an age-related 208 

increase in circulating IL-6 levels as a key factor in the decline in skeletal muscle 209 

strength, mass, and function[29]. Pelosi et al. observed the effects of high levels of 210 

IL-6 on NSE/IL-6 mice and found that IL-6 may cause muscle atrophy by promoting 211 

an increase in glycolytic metabolism[30]. 212 

A meta-analysis showed that older adults with sarcopenia had higher levels of TNF-α, 213 

indicating that high levels of TNF-α were associated with an increased risk of 214 

sarcopenia[31]. Increased plasma concentrations of TNF-α were associated with lower 215 

muscle mass, strength, and activation of apoptosis in muscle cells. TNF-α activates 216 

local vascular endothelial cells, leading to the release of nitric oxide, which in turn 217 

increases vascular permeability and allows passage of proinflammatory cells, 218 

ultimately causing inflammation [32]. TNF-α can also promote muscle atrophy by 219 

activating the nuclear factor-kB (NF-Κb) pathway, up-regulating muscle ring finger 220 

protein-1 (MuRF-1), and activating the ubiquitin-proteasome pathway [33]. 221 

Pyroptosis mediated by TNF-ɑ/caspase-8/caspase-3/GSDME signaling pathway is a 222 

new mechanism for the occurrence and development of sarcopenia. 223 

Caspase-3/GSDME signaling pathway mediated pyroptosis may be a promising 224 

therapeutic target for sarcopenia [34]. 225 

 226 

3. Impaired autophagy function of muscle fibers 227 

Impaired autophagy function of muscle fibers is the common pathophysiological 228 

mechanism of muscle fiber loss in sarcopenia and PD [13]. Autophagy regulates 229 

inflammatory cytokines by inhibiting oxidative stress to maintain the normal function 230 

of muscle fiber organelles and cells [35, 36]. Autophagy dysfunction disrupts cellular 231 

homeostasis, impairs mitochondrial function, aggravates oxidative stress, accelerates 232 

cell senescence, and damages muscle satellite cells [37]. Satellite cells are located 233 

between the basement and sarcolemmal membranes of muscle fibers in a mitotically 234 

quiescent state, and these cells are activated and proliferate in response to stimuli such 235 
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as physical exercise, injury, or mechanical stress. Insulin-like growth factor-1(IGF-1) 236 

is closely related to the differentiation and proliferation of muscle satellite cells and 237 

the fusion of muscle cells [38, 39]. Inhibition of autophagy may reduce growth 238 

hormone receptor (GHR) and IGF-1 to inhibit satellite cell regeneration[40]. 239 

Oxidative stress refers to the imbalance between oxidative and antioxidant regulation. 240 

Several evidences suggest that the Kelch-like ECH-associated protein 1 (Keap1) 241 

-nuclear factor-erythroid 2-related factor 2 (Nrf2) system is closely related to 242 

oxidative stress, and its signaling is also regulated by phosphatidylinositol 3 kinase 243 

(PI3K)/protein kinase B (PKB, also known as Akt), PKC and mitogen-activated 244 

protein kinase[41]. Autophagy plays a protective role in oxidative stress by promoting 245 

the competitive binding of Nrf2 by p62 instead of Keap1 and inhibiting the 246 

degradation of Nrf2[42]. Impaired autophagy leads to reduced inhibition of Nrf2 247 

degradation, increased ROS production and oxidative stress markers. The NF-κB 248 

signaling pathway is known to promote inflammatory activation. Related studies have 249 

found that inhibition of autophagy may activate the NF-κB signaling pathway, 250 

generate the NLRP3 inflammatome, promote the expression of inflammatory factor 251 

IL-1β, inhibit the anabolic metabolism of myocytes, and induce sarcopenia[43-45]. 252 

FOXOs members are the most widely known transcription factors downstream of the 253 

AKT/IGF-1/ insulin pathway, and their activity can be regulated by a variety of 254 

enzymes or by transcription factors. In humans, four FOXOs have been identified, 255 

among which FOXO1 and FOXO3 are involved in muscle atrophy, regulation of 256 

autophagy gene transcription and aberrant autophagy[46, 47]. FOXOs are induced by 257 

adenosine 5 '-monophosphP-activated protein kinase (AMPK) to translocate into the 258 

nucleus and persist in muscle atrophy[48]. 259 

 260 

4. Motor neuron reduction 261 

The effects of PD on skeletal muscle include decreased muscle strength, endurance, 262 

and muscle atrophy[17]. These effects can be explained in part by the death of motor 263 

neurons, and this continued denervation accelerates the onset of sarcopenia. A 264 

reduction in the number of motor neurons is a common feature of both sarcopenia and 265 

PD[49]. The transcription factor NF-κB is a key intracellular signaling molecule in 266 

denervation leading to muscle atrophy[50]. The transcription factor NF-κB is a key 267 

intracellular signaling molecule in denervation leading to muscle atrophy[32]. These 268 

effects can be explained in part by the death of motor neurons, and this continued 269 

denervation accelerates the onset of sarcopenia. A reduction in the number of motor 270 



10 
 

neurons is a common feature of both sarcopenia and PD[12]. Neuronal apoptosis may 271 

be the mechanism of motor neuron reduction in PD patients with sarcopenia. The 272 

mitochondrial permeability transition pore (mPTP) is a weakly selective large 273 

conductive channel that is closed under non-stress conditions and can be triggered to 274 

open by reactive oxygen species (ROS) and Ca2+ overload produced by mitochondria. 275 

Excessive opening of mPTP results in an imbalance of mitochondrial membrane 276 

potential and subsequent release of mitochondrial contents, such as ROS and 277 

cytochrome c, into the cytoplasm, thereby initiating an apoptotic signaling cascade in 278 

motor neurons and myofibers. Activation of apoptotic signals is accompanied by DNA 279 

fragmentation and nuclear apoptosis, which eventually leads to muscle atrophy and 280 

denervation [51]. 281 

5. Brain structure and network changes 282 

Changes in brain structure and networks play a key role in the pathophysiology of PD 283 

patients with sarcopenia. Decreased gray matter volume in specific regions of PD 284 

patients, such as the uncinate gyrus and superior temporal gyrus, is significantly 285 

associated with core muscle loss [52]. The reduced size of the default mode network 286 

results in insufficient activity of the task-related network, resulting in poor motion 287 

function [52]. Compared with PD patients without sarcopenia, sarcopenia showed the 288 

strongest correlation with muscle mass loss by diffusion tensor imaging (DTI), which 289 

represents white matter changes in the executive function network of PD patients with 290 

sarcopenia [53]. Furthermore, reduced ASMI was associated with reduced fractional 291 

anisotropy of frontostriato-thalamic circuits in sarcopenic PD patients [53]. 292 

 293 

6. Sex hormone deficiency 294 

PD patients with sarcopenia may be affected by the changes of sex hormones. 295 

Androgens play an important role in the maintenance of muscle mass. Low plasma 296 

testosterone levels can cause or accelerate muscle and age-related diseases. In 297 

addition to the natural decline in testosterone levels with age, abnormalities in plasma 298 

testosterone levels can be observed in endocrine diseases such as late-onset 299 

hypogonadism, decreased androgen production, and accelerated testosterone 300 

metabolism [54]. However, no studies have investigated the relationship between 301 

testosterone and sarcopenia in PD patients, and future studies are needed to clarify 302 

this. 303 

However, no studies have investigated the relationship between testosterone and 304 

sarcopenia in PD patients, and future studies are needed to clarify this[55]. However, 305 
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no studies have investigated the relationship between testosterone and sarcopenia in 306 

PD patients, and future studies are needed to clarify this[56]. However, no studies 307 

have investigated the relationship between testosterone and sarcopenia in PD patients, 308 

and future studies are needed to clarify this [56] . These inflammatory factors can 309 

degrade muscle proteins and reduce the ability of adult muscles to respond to injury. 310 

Estradiol inhibits the occurrence of sarcopenia by regulating local and systemic 311 

inflammatory responses [57, 58]. 312 

 313 

7. Mitochondrial dysfunction 314 

Mitochondrial dysfunction has been demonstrated in non-neuronal tissues of PD 315 

patients, and it has been shown that mitochondrial abnormalities are more common in 316 

PD with sarcopenia than in healthy older muscles [11] . ROS includes superoxide 317 

anions, hydroxyl radicals and hydrogen peroxide, and the most important ROS 318 

production in muscle cells is located in the mitochondria. ROS causes progressive 319 

damage to key cellular macromolecules, including lipids, proteins, and DNA, thereby 320 

altering their structure and function. Denervation or NMJ degeneration significantly 321 

increases the production of peroxides in muscle mitochondria while eliminating the 322 

interaction between motor neurons and muscle, resulting in significant defects in 323 

muscle regeneration [59]. Yang et al. [60] found that oxidative stress induced by 324 

α-synuclein (α-Syn) aggregation might be a new idea for muscle atrophy in PD 325 

patients. Aggregation of α-Syn results in an increased number of swollen and broken 326 

cristae structure mitochondria in intramuscular axons and NMJS. At the same time, 327 

the expression of genes related to ROS metabolism decreased, resulting in increased 328 

oxidative stress of intramuscular mitochondria. In addition, mitochondrial dysfunction 329 

may also be the result of failure of mitochondrial quality control (MQC) processes, 330 

including protease homeostasis, biogenesis, dynamics, and mitophagy [61]. 331 

 332 

Adverse outcomes 333 

1.Fall 334 

Falls are a serious problem in PD patients with sarcopenia. Patients with PD and 335 

sarcopenia have an increasing risk of falling compared to healthy individuals and 336 

patients with other neurological conditions such as polyneuropathy, spinal disease, 337 

and multiple sclerosis [49]. Older adults taking anti-PD medications have a higher 338 

risk of exposure to fall-inducing medications. The more advanced the disease, the 339 

more drugs they need, and the less independent these patients are [49]. Clinical 340 
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manifestations associated with sarcopenia, such as reduced mobility, poor balance, 341 

and reduced leg muscle strength, are associated with increased risk of falls [62]. 342 

Studies had shown that disease duration, freezing of gait, postural instability, 343 

non-motor symptoms, and high levodopa equivalent daily dose (LEDD) were also 344 

associated with the occurrence of falls [9, 49, 63]. From the perspective of prognosis, 345 

compared with non-fallers, frequent fallers have a longer course of disease and worse 346 

prognosis [64]. From the perspective of prognosis, compared with non-fallers, 347 

frequent fallers have a longer course of disease and worse prognosis. 348 

 349 

2. Disability 350 

Disability is defined as impairment in the ability to perform basic activities of daily 351 

living (ADL) and instrumental activities of daily living (IADL). Individuals with PD 352 

and sarcopenia have greater difficulty with ADL and IADL [65]. Musculoskeletal 353 

conditions and motor and nonmotor symptoms of PD affect life skills, and these 354 

challenges increase with aging and neurodegenerative disease progression. Muscle 355 

strength is strongly associated with severity of PD and disability, and sarcopenia, 356 

defined using the SARC-F questionnaire, is a good predictor of disability in PD [9].  357 

 358 

3. Fracture 359 

The occurrence of fractures is influenced by two main factors: on the one hand, the 360 

neuro-musculoskeletal changes accompanying PD and impaired postural stability due 361 

to reduced leg muscle strength can lead to falls, which cause traumatic 362 

injuries-fractures; on the other hand, PD and the use of levodopa increases the risk of 363 

osteoporosis [66]. 364 

 365 

4. Dysphagia 366 

Age and disease characteristics are high risk factors for dysphagia in patients with PD, 367 

and muscle mass is lower in patients with PD compared to healthy controls and more 368 

pronounced in PD patients with dysphagia [4].Chronic denervation and reinnervation 369 

are secondary to systemic neurodegeneration, resulting in pharyngeal atrophy of the 370 

swallowing muscle in PD patients with dysphagia [67]. Dysphagia can lead to 371 

inadequate drug intake, malnutrition, dehydration, and aspiration pneumonia, which is 372 

the leading causes of death in PD patients [68]. 373 

 374 

5. Loss of weight  375 
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Weight loss and reduced body mass index are common in PD patients due to altered 376 

energy expenditure, impaired homeostatic regulation, and gastrointestinal dysfunction 377 

[10]. Weight loss may precede the diagnosis of PD and often worsens as the disease 378 

progresses, leading to an increased risk of malnutrition, fractures, pressure ulcers, and 379 

death [10]. 380 

 381 

Treatment of Parkinson's disease with sarcopenia 382 

1. Non-drug treatment 383 

1.1 Exercise therapy 384 

Exercise is considered to be one of the most commonly used treatments to improve 385 

sarcopenia in PD patients[1, 69]. Liver growth factor (HGF) is attached to the 386 

extracellular matrix and is released after physical activity to repair tissue damage 387 

caused by exercise and can activate muscle satellite cells. Exercise promotes the 388 

production of nitric oxide (NO) in the body, and NO is a key signal for HGF 389 

activation. Lack of exercise or disuse leads to reduced NO production, which in turn 390 

affects HGF release from the extracellular matrix, keeping muscle satellite cells in the 391 

G0 phase of the cell cycle [32]. Resistance exercise has been shown to be beneficial 392 

for sarcopenia  and is widely accepted by patients as a treatment [70, 71]. In one 393 

study, significant improvements in SMM, muscle function, and NMJ integrity index 394 

were found in PD patients after 16 weeks of resistance training. Whole-transcriptome 395 

skeletal muscle RNA sequencing of skeletal muscle of PD patients before and after 396 

resistance training found that genes related to nervous system and muscle 397 

development were significantly up-regulated, and genes negatively regulated by 398 

muscle adaptation were down-regulated [72]. Exercise can stimulate the transfer of 399 

muscle mitochondria and mitochondrial DNA (mtDNA) through extracellular vesicles 400 

to repair damaged neuronal mitochondria [73]. Exercise-induced autophagy is 401 

beneficial for the treatment of sarcopenia by regulating Akt/mTOR and Akt/FoxO3a 402 

signaling pathways and AMPK-mediated MQC[74]. In addition, the 403 

ubiquitin-proteasome system(UPS) is one of the major pathways involved in muscle 404 

protein degradation. This system plays a key role in controlling muscle fiber size. In 405 

this degradation mechanism, specific ligases bind ubiquitin to substrate proteins in 406 

order to initiate their proteolysis. Exercise can activate AMPK/PGC-1α signaling 407 

pathway and inhibit UPS damage, excessive apoptosis, autophagy defects and 408 

mitochondrial dysfunction, thereby preventing and delaying sarcopenia [75]. Skeletal 409 

muscle contraction stimulates the release of BDNF and activates cyclic-AMP 410 
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response element binding protein (CREB) to stimulate DNA repair [32]. 411 

 412 

1.2 Nutritional therapy 413 

Muscle-targeting oral nutritional supplements may be an effective treatment for PD 414 

patients with sarcopenia. Muscle-targeted oral nutritional supplements are whey 415 

protein-based formulations rich in leucine and vitamin D [76]. Whey protein has been 416 

shown to be a valuable source of protein by rapidly increasing plasma essential amino 417 

acid levels, thereby stimulating muscle protein synthesis [77]. Whey proteins are 418 

capable of producing a variety of dipeptide and tripeptide hydrolysates, known as 419 

antisarcopenia peptides, which are more readily absorbed than free amino acids [78]. 420 

They play a key role by activating the PI3K/Akt/mTOR and MAPK pathways and 421 

inhibiting the UPS and AMPK pathway, thereby promoting the synthesis and 422 

inhibiting the degradation of muscle proteins [79]. Leucine has a positive effect on 423 

protein turnover in regulating skeletal muscle anabolism, protein synthesis, and 424 

autophagy [80]. Leucine can stimulate muscle protein synthesis and inhibit protein 425 

degradation through mTOR signaling pathway, and further effectively improve 426 

sarcopenia [79]. Vitamin D deficiency can promote the expression of related proteins 427 

and regulate the synthesis and degradation of skeletal muscle proteins. The study 428 

found that vitamin D deficiency increased protein expression of MuRF1, muscle 429 

atrophy F-box (MAFbx), and FOXO3a [81]. MAFbx catalyzes protein degradation 430 

and promotes and controls protein synthesis by regulating eukaryotic initiation factor 431 

3 (eIF3f)[82]. MuRF1 selectively binds to and promotes fibrin ubiquitination, thereby 432 

increasing protein degradation by the 26S proteasome [83]. A pragmatic, bi-center, 433 

randomized assessor-blinded controlled trial found that consumption of a whey 434 

protein formula rich in leucine and vitamin D improved lower limb function and 435 

preserved muscle mass in patients with PD [84]. In a single-center, double-blind, 436 

randomized, controlled trial, consumption of a whey protein nutritional formula rich 437 

in leucine and vitamin d improved physical function and muscle mass. [85].Therefore, 438 

it further suggests the feasibility of muscle-targeted oral nutritional supplements in the 439 

prevention and treatment of PD patients with sarcopenia. 440 

 441 

1.3 Exercise combined with nutrition therapy 442 

Resistance exercise combined with nutritional supplements can significantly improve 443 

patients' physical function, muscle mass and strength [16] . Taking a formula rich in 444 

leucine and vitamin D, combined with rehabilitation exercise for people with PD, 445 
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improves walking distance and speed and increases muscle mass more than 446 

rehabilitation alone [84]. The study found that participants who took whey protein 447 

after resistance exercise had increased muscle mass, grip strength and gait speed 448 

compared to those in any single intervention group [86]. Therefore, exercise 449 

combined with nutrition therapy is superior to a single treatment in PD patients with 450 

sarcopenia. 451 

 452 

Drug therapy 453 

There are currently no specific drugs approved for the treatment of PD patients with 454 

sarcopenia [87]. However, some drugs used in clinical or scientific research have been 455 

shown to benefit muscles. Therefore, we summarize the potential benefits of these 456 

drugs on muscle and provide new directions for the treatment of sarcopenia.  457 

Inflammation plays a crucial role in the pathogenesis of PD with sarcopenia. 458 

Therefore, targeted therapy against inflammatory factors associated with sarcopenia 459 

may be an effective strategy to improve sarcopenia [87]. TNF-α and IL-6 promote 460 

chronic inflammation and affect skeletal muscle capacity, which are regarded as 461 

potential therapeutic targets for sarcopenia. TNF-α inhibitor etanercept can inhibit 462 

fiber type transition, inhibit muscle loss, improve muscle function, and prolong the 463 

life span of aging mice [88, 89]. Patients with rheumatoid arthritis had increased 464 

skeletal muscle mass in the extremities with tocilizumab, an anti-IL-6 receptor 465 

monoclonal antibody, as compared with untreated patients [90]. 466 

Irisin is an exercise-induced polypeptide hormone secreted by muscle and produced 467 

by FNDC5 proteolysis, which is also a biomarker of sarcopenia [91]. Several lines of 468 

evidence suggest that PI3K/Akt/Nrf2 is a therapeutic target for  oxidation/reduction 469 

(REDOX) reactions imbalance and age-related diseases [41]. Irisin protects skeletal 470 

muscle by reducing REDOX imbalance and fibrosis by regulating the PI3K/Akt 471 

signaling pathway [91]. Irisin plays a neuroprotective role in PD by reducing the loss 472 

of dopaminergic neurons and promoting lysosomal degradation of pathological α-syn 473 

in PD mouse models [92]. In addition, irisin triggers the expression of brain-derived 474 

neurotrophic factor, which crosses the blood-brain barrier, enhances mitochondrial 475 

biogenesis in neurons, and reduces dopaminergic loss in animal models of PD [93]. 476 

Angiogenic factor-1 (AGGF1) is a biologically active substance that stimulates the 477 

formation of new blood vessels and usually plays a role in growth, development, and 478 

repair. [94]. A recent study found that intramuscular and intraperitoneal injection of 479 

recombinant AGGF1 protein can alleviate the atrophy phenotype of denervated mice. 480 
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This may be due to AGGF1 may promote skeletal muscle autophagy and inhibit 481 

MuRF1 expression through AGGF1-TWEAK (tumor necrosis factor-like weak 482 

inducer of apoptosis)/Fn14-NF-κB signaling pathway. Finally, skeletal muscle atrophy 483 

was alleviated. Therefore, AGGF1 protein therapy may be a new way to treat patients 484 

with skeletal muscle atrophy [50]. 485 

Melatonin is an endogenous substance secreted by the pineal gland, which can 486 

increase autophagy through the cGAS-STING-TBK and AMPK/FoXO3a signaling 487 

pathways, thereby improving oxidative stress and inflammation [95, 96]. The 488 

antioxidant effect of melatonin can also be mediated by mitochondria [97]. 489 

Mitochondria are an important site for ROS production, and melatonin can protect 490 

mitochondrial structure from oxidative stress by regulating glutathione peroxidase 491 

(GPx) and glutathione reductase (GRd) to maintain the reduced state of glutathione in 492 

mitochondria [98]. Pax7 acetylation regulates skeletal muscle satellite cells 493 

self-renewal and muscle stem cell differentiation potential [99]. Melatonin increases 494 

Paired box(Pax7) expression to accelerate skeletal muscle differentiation, thereby 495 

rapidly rescuing muscle injury[100]. Therefore, melatonin can be used as an 496 

important therapeutic target for muscle injury repair. In addition, in PD patients, 497 

melatonin can improve neuroinflammation by inhibiting signal transducer and 498 

activator of transcription (STAT)-related proinflammatory microglial polarization, 499 

providing neuroprotection in PD patients[101]. At the same time, melatonin has 500 

potential therapeutic value in improving patients' sleep[102]. Therefore, melatonin 501 

supplementation may have certain benefits in the treatment of PD patients with 502 

sarcopenia. 503 

Androgen supplementation has been observed clinically to exert anabolic effects, 504 

enhance muscle strength, and increase muscle size [54]. Testosterone can promote 505 

muscle fiber regeneration and repair by activating IGF-1 level in muscle satellite cells. 506 

Binding of IGF-1 to its receptor activates PI3K and Akt, which activate mammalian 507 

target of rapamycin (mTOR), thereby promoting muscle protein synthesis [79]. 508 

Androgens may also maintain mitochondrial mass by inducing mitochondrial 509 

biogenesis and inhibiting autophagy. In addition, testosterone may protect the 510 

mitochondrial respiratory chain from oxidative damage and maintain normal 511 

oxidative phosphorylation function as found in a large number of animal tests 512 

[103-105]. However, no studies of testosterone supplementation have specifically 513 

focused on PD patients with sarcopenia. Therefore, the efficacy and safety of 514 

supplemental testosterone therapy in PD patients with sarcopenia remain to be 515 
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determined [106]. 516 

Estrogens, especially estradiol, play a key role in the protection of muscle health in 517 

older women. Postmenopausal skeletal muscle mass loss is reversible with estradiol 518 

hormone replacement therapy. At the same time, estrogen replacement therapy can 519 

also significantly increase the number of muscle satellite cells and improve motor 520 

capacity and muscle strength [56]. At the same time, estrogen replacement therapy 521 

can also significantly increase the number of muscle satellite cells and improve motor 522 

capacity and muscle strength. From the genomic pathway, estrogen promotes 523 

mitochondrial biogenesis and ATP production by increasing the expression of PGC-1 524 

and downstream target genes through estrogen receptor α (ERα) and Erβ. From 525 

non-genomic pathways, ERα and G protein-coupled estrogen receptor (GPER) 526 

enhance mitochondrial respiration and ATP production through PKA-mediated 527 

17β-estradiol [61]. However, estrogen replacement therapy has not been widely 528 

accepted as an effective treatment for PD with sarcopenia [107]. 529 

Spermidine, a naturally occurring polyamine, has received much attention due to its 530 

potential autophagy induction mechanism and is a good target for the prevention and 531 

treatment of sarcopenia [47]. The researchers found that spermidine can promote 532 

autophagy through activation of the (AMPK)/p27Kip1 and SIRT1/FoXO3a pathways, 533 

inducing the proliferation of muscle satellite cells and muscle regeneration [108, 109]. 534 

In addition to reducing markers of oxidative damage and preserving mitochondrial 535 

function, spermidine has anti-inflammatory properties, Its anti-inflammatory 536 

properties are through inhibiting the accumulation of ROS, reducing the expression 537 

level of tumor necrosis factor-α (TNF-α), inhibiting the nuclear translocation of 538 

NF-κb p65 subunit, and inhibiting the expression of IL-18 and IL-1β[110]. In addition, 539 

spermidine has been found to have a potential neuroprotective effect against 540 

degenerative changes in PD through its antioxidant and anti-inflammatory properties 541 

in animal studies of PD. It rescued neurons in the substantia nigra pars compacta 542 

(SNpc) of the midbrain and striatal nerve endings while reducing oxidative stress, 543 

neuroinflammation and restoring striatal neurochemistry [111]. 544 

 545 

Conclusion 546 

Loss of muscle mass and strength as well as neurodegenerative changes are inevitable 547 

processes during human aging. Sarcopenia and PD are common diseases in the elderly, 548 

and the combination of the two is closely related to falls, fractures, frailty, and even 549 

death. At the same time. The progressive loss of function associated with sarcopenia 550 
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may ultimately contribute to the neurodegenerative process of PD. Therefore, active 551 

detection, diagnosis and appropriate management of PD with sarcopenia are essential. 552 

Early screening, detection, and treatment of sarcopenia may serve as a potential 553 

protective measure against the decline in strength and physical function that may 554 

occur in PD patients as the disease progresses. More and more experts and scholars 555 

believe that exercise and nutrition therapy are particularly important for the 556 

improvement of patients' condition and life treatment. Although a variety of drugs 557 

have been found to be beneficial in the treatment of PD with sarcopenia, there is no 558 

specific drug for the disease at present, and a variety of basic and clinical trials need 559 

to be carried out in the future. 560 

  561 
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Table 1 Diagnostic methods and cut-off values in the latest consensus 911 

Consensus Muscle strength (grip 

strength: kg) 

Muscle mass Physical function 

IWGS[112] — DXA-ALMI ： M<7.23 

kg/m2，F<5.67kg/m2 

step speed＜ 1.0 m/s 

FNIH[113] 

 

 

 

 

EWGSOP， 

2018[1] 

 

 

 

                             

M＜26 

F＜16 

 

 

 

M＜27 

F＜16 

DXA-ASM/BMI ：

M<0.789，F<0.512 

ALM(kg):M<19.75 ，

F<15.02 

 

DXA-ASMI ： M<7.0 

kg/m
2，F<6.0 kg/m

2
 

step speed＜ 0.8 m/s 

 

 

 

 

step speed＜ 0.8 m/s  

or SPPB ≤ 8 points 

orTUG ≥ 20 s  

or The 400-m walk was 

not completed or≥ 6 

min  

or5STS＞15 s 

AWGS，2019[16] 

 

M＜28  

F＜18 

DXA-ASMI: M<7.0 

kg/m
2，F<5.4 kg/m

2
 

BIA-ASMI: M<7.0 

kg/m2，F<5.7 kg/m2 

step speed＜ 1.0 m/s  

or SPPB ≤ 9 points 

or5STS＞12 s 

ASM: appendicular skeletal muscle mass; ALM: appendicular skeletal muscle mass; 912 

ASMI: appendicular skeletal muscle mass index;ALMI: appendicular skeletal muscle 913 

mass index 914 


