• 随着全球健康危机的持续,公共卫生体系的完善成为紧迫议题。
  • 虚拟现实和增强现实技术在教育和娱乐领域的应用越来越广泛。
  • 移动支付和数字货币的普及改变了全球支付体系。
  • 全球健康危机加速了医疗保健行业的数字化转型。
  • 云计算的普及正在改变企业的IT基础设施和运营模式。
  • 随着人口老龄化,养老服务和健康管理成为社会关注的新焦点。
  • 电子商务的蓬勃发展正在重塑全球零售和供应链管理。
  • 5G技术的普及为物联网和智能设备的发展提供了新动力。
  • 在线教育平台的兴起为传统教育模式带来了挑战和机遇。
  • 电动汽车的快速发展正在重塑汽车产业的未来。
  • 数字化教育平台正在全球范围内重塑学习体验。
  • 在线教育的普及为全球学习者提供了前所未有的学习机会。
  • 生物技术的进步为治疗遗传疾病提供了新的可能性。
  • 电子商务的快速发展对传统零售业造成了巨大冲击。
  • 太空探索的商业化为航天行业带来了新的机遇。
  • 数字化教育平台正在全球范围内重塑学习体验。
  • 自动化和机器人技术正在改变制造业和服务业的工作方式。
  • 电子商务的快速发展对传统零售业造成了巨大冲击。
  • 自动化和机器人技术在制造业中的应用提高了生产效率和安全性。
  • 数字化转型在疫情后变得至关重要,企业纷纷加速其进程。
  • 人工智能在医疗领域的应用为疾病诊断和治疗带来了新的希望。
  • 5G技术的普及为物联网和智能设备的发展提供了新动力。
  • 可持续发展目标正在推动全球经济的绿色转型。
  • 自动化和机器人技术在制造业中的应用提高了生产效率和安全性。
  • 随着全球疫情的逐渐控制,各国经济复苏成为新的关注焦点。
  • KDClassifier: A urinary proteomic spectra analysis tool based on machine learning for the classification of kidney diseases | Zhao | Aging Pathobiology and Therapeutics

    KDClassifier: A urinary proteomic spectra analysis tool based on machine learning for the classification of kidney diseases

    Wanjun Zhao, Yong Zhang, Xinming Li, Yonghong Mao, Changwei Wu, Lijun Zhao, Fang Liu, Jingqiang Zhu, Jingqiu Cheng, Hao Yang, Guisen Li

    Abstract


    Background: We aimed to establish a novel diagnostic model for kidney diseases by combining artificial intelligence with complete mass spectrum information from urinary proteomics.

    Methods: We enrolled 134 patients (IgA nephropathy, membranous nephropathy, and diabetic kidney disease) and 68 healthy participants as controls, with a total of 610,102 mass spectra from their urinary proteomic profiles. The training data set (80%) was used to create a diagnostic model using XGBoost, random forest (RF), a support vector machine (SVM), and artificial neural networks (ANNs). The diagnostic accuracy was evaluated using a confusion matrix with a test dataset (20%). We also constructed receiver operating-characteristic, Lorenz, and gain curves to evaluate the diagnostic model.

    Results: Compared with the RF, SVM, and ANNs, the modified XGBoost model, called Kidney Disease Classifier (KDClassifier), showed the best performance. The accuracy of the XGBoost diagnostic model was 96.03%. The area under the curve of the extreme gradient boosting (XGBoost) model was 0.952 (95% confidence interval, 0.9307–0.9733). The Kolmogorov-Smirnov (KS) value of the Lorenz curve was 0.8514. The Lorenz and gain curves showed the strong robustness of the developed model.

    Conclusion: The KDClassifier achieved high accuracy and robustness and thus provides a potential tool for the classification of kidney diseases.

    Keywords: Kidney disease classification, urinary proteomics, machine learning algorithm, diagnosis, artificial intelligence




    Subscribe to receive issue release notifications
    and newsletters from journals